Chapter 11 Note: wherever possible, values used in the solutions below are taken directly from the SAS output provided in the text. - **1. a** WGT = $\beta_0 + \beta_1$ HGT + β_2 AGE + β_3 (AGE)² + E - **b** Since we are interested in the relationship between HGT and WGT, we will focus on $\hat{\beta}_1$ as the measure of association. The following table is useful to assess potential confounding due to AGE and/or AGE²: | 5 % CI for β_1 | |----------------------| | .097, 1.350) | | .141, 1.303) | | .139, 1.313) | | .540, 1.604) | | | Note that $\hat{\beta}_1$ does not change when either AGE or AGE² are removed from the model. However, $\hat{\beta}_1$ changes "significantly" when both AGE and AGE² are removed from the model. Thus, there is confounding due to AGE and AGE². - **c** AGE² can be dropped from the model because $\hat{\beta}_1$ does not change significantly. - **d** AGE² should not be retained in the model because the 95% C.I. for β_1 is narrower when AGE² is absent from the model. - e Considering the change in $\hat{\beta}_1$ and the width of the 95% C.I., the final model should be WGT = $\beta_0 + \beta_1$ HGT + β_2 AGE + E. - **f** Revise the model as WGT = $\beta_0 + \beta_1$ HGT + β_2 AGE + β_3 (AGE)² + β_4 HGT*AGE + β_5 HGT*(AGE)² + E. - **g** We would test for interaction by performing a multiple-partial F test for H_0 : $\beta_4 = \beta_5 = 0$. If this test is significant, then perform separate partial F tests to assess H_0 : $\beta_4 = 0$ and H_0 : $\beta_5 = 0$.