Chapter 11

Note: wherever possible, values used in the solutions below are taken directly from the SAS output provided in the text.

- **1. a** WGT = $\beta_0 + \beta_1$ HGT + β_2 AGE + β_3 (AGE)² + E
 - **b** Since we are interested in the relationship between HGT and WGT, we will focus on $\hat{\beta}_1$ as the measure of association. The following table is useful to assess potential confounding due to AGE and/or AGE²:

5 % CI for β_1
.097, 1.350)
.141, 1.303)
.139, 1.313)
.540, 1.604)

Note that $\hat{\beta}_1$ does not change when either AGE or AGE² are removed from the model. However, $\hat{\beta}_1$ changes "significantly" when both AGE and AGE² are removed from the model. Thus, there is confounding due to AGE and AGE².

- **c** AGE² can be dropped from the model because $\hat{\beta}_1$ does not change significantly.
- **d** AGE² should not be retained in the model because the 95% C.I. for β_1 is narrower when AGE² is absent from the model.
- e Considering the change in $\hat{\beta}_1$ and the width of the 95% C.I., the final model should be WGT = $\beta_0 + \beta_1$ HGT + β_2 AGE + E.
- **f** Revise the model as WGT = $\beta_0 + \beta_1$ HGT + β_2 AGE + β_3 (AGE)² + β_4 HGT*AGE + β_5 HGT*(AGE)² + E.
- **g** We would test for interaction by performing a multiple-partial F test for H_0 : $\beta_4 = \beta_5 = 0$. If this test is significant, then perform separate partial F tests to assess H_0 : $\beta_4 = 0$ and H_0 : $\beta_5 = 0$.