6 a
$$H_0: \rho_{YX_3 \mid X_1} = 0$$
 $H_A: \rho_{YX_3 \mid X_1} \neq 0$

$$F(X_3 \mid X_1) = \frac{7010.03}{\underbrace{2259.16}} = 68.265 \qquad (1, 22 \text{ df})$$

P < 0.001

At $\alpha = 0.05$ we reject H_0 and conclude that X_3 added to a model already containing X_1 does explain a significant amount of variation in Y.

b
$$H_0: \rho_{YX_2 \mid X_1, X_3} = 0$$
 $H_A: \rho_{YX_2 \mid X_1, X_3} \neq 0$
 $F(X_2 \mid X_1, X_3) = \frac{10.93}{21} = 0.102$ (1, 21 df)

P > 0.25

At $\alpha = 0.05$ we do not reject H_0 and conclude that X_2 added to a model already containing X_1 and X_3 does not explain a significant amount of variation in Y.

c
$$H_0: \rho_{Y(X_2, X_3)|X_1} = 0$$
 $H_A: \rho_{Y(X_2, X_3)|X_1} \neq 0$

$$F(X_2, X_3|X_1) = \frac{(7010.03 + 10.93)/2}{2248.23/21} = 32.79$$
 (2, 21 df)

P < 0.001

At $\alpha = 0.05$ we reject H_0 and conclude that X_2 and X_3 added to a model already containing X_1 explain a significant amount of variation in Y.

d We would include X_1 and X_3 in the model and omit X_2 .