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CHAPTER 1 STAT 3601

1 Preliminaries

Complimentary reading from Rao: Chapters 1-4 and 7.

1.1 Introduction

We first provide some terminology that we will use throughout the course.

TERMINOLOGY : An experiment is a planned study where individuals are subjected

to treatments.

TERMINOLOGY : An experimental unit is the unit of material to which a treatment

is applied. An experimental unit may be an individual or a collection of individuals.

TERMINOLOGY : Statistics is the development and application of theory and meth-

ods to the collection (design), analysis, and interpretation of observed information from

planned (or unplanned) experiments.

TERMINOLOGY : Biometry is the development and application of statistical methods

for biological experiments (which are often planned).

TERMINOLOGY : In a statistical problem, the population is the entire group of in-

dividuals that we want to make some statement about. A sample is a part of the

population that we actually observe.

TERMINOLOGY : A variable is a characteristic (e.g., temperature, age, CD4 count,

growth, etc.) that we would like to measure on individuals.

TERMINOLOGY : Measurements of a variable observed from individuals in the sample

are called data.

TERMINOLOGY : The process of generalising the results in our sample to that of the

entire population is known as statistical inference.

PAGE 1
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Figure 1.1: Salmonella experiment: Laceration length for the three treatments.

Example 1.1. Salmonella bacteria are widespread in human and animal populations;

in particular, some serotypes can cause disease in swine. A food scientist wants to

see how withholding feed from pigs prior to slaughter can reduce the number and size

of gastrointestinal tract lacerations during the actual slaughtering process. This is an

important issue since pigs infected with salmonellosis may contaminate the food supply.

• Experimental units = pigs

• Population = all market-bound pigs, say

• Sample = 45 pigs from 3 farms (15 per farm) assigned to three treatments:

– Treatment 1: no food withheld prior to transport,

– Treatment 2: food withheld 12 hours prior to transport, and

– Treatment 3: food withheld 24 hours prior to transport.

• Data were measured on many variables, including body temperature prior to slaugh-

ter, weight prior to slaughter, treatment assignment, the farm from which each pig
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originated, number of lacerations recorded, and size of laceration (cm). Boxplots

of the lacerations lengths (by treatment) are in Figure 1.1.

QUESTIONS OF INTEREST :

• How should we assign pigs to one of the three treatments?

• What are the sources of variation? That is, what systematic components might

affect laceration size or number of lacerations?

• Why would one want to use animals from three farms? Why might body temper-

ature or prior weight be of interest?

SOME GENERAL COMMENTS :

• In agricultural, medical, and other biological applications, the most common ob-

jective is to compare two or more treatments. In light of this, we will often talk

about statistical inference in the context of comparing treatments in an experimen-

tal setting. For example, in the salmonella experiment, one goal is to compare the

three withholding times (0 hours, 12 hours, and 24 hours).

• Since populations are usually large, the sample we observe is just one of many

possible samples that are possible to observe. That is, samples may be similar, but

they are by no means identical. Because of this, there will always be a degree of

uncertainty about the decisions that we make concerning the population of interest.

• A main objective of this course is to learn how to design controlled experiments and

how to analyse data from these experiments. We would like to make conclusions

based on the data we observe, and, of course, we would like our conclusions to

apply for the entire population of interest.

A ONE-WAY MODEL: Let Yij denote the laceration length for the jth pig on the ith

withholding time. We may consider modelling the lengths as

Yij = µ + τi + εij,

PAGE 3
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for i = 1, 2, 3, j = 1, 2, ..., 15, where µ denotes the overall mean length (ignoring with-

holding times), and τi denotes the effect associated with the ith withholding time. All

of µ and the τi’s are assumed to be fixed parameters. This model is an example of

a one-way linear model. The model consists of two parts. The first part is the de-

terministic part Yij = µ + τi. The second part, εij, is the random error associated

with the jth pig on the ith withholding time. This error could arise from measurement

inconsistencies, inherent biological differences in pigs, sampling error, etc.

AN ANCOVA MODEL: Alternatively, one may consider the model

Yij = µ + τi + γixij + εij,

for i = 1, 2, 3, j = 1, 2, ..., 15, where γi are fixed parameters and xij denotes the weight

of the jth pig on the ith withholding time prior to slaughter. This is an example of

an analysis of covariance (ANCOVA) linear model. Here, the covariate is x, the

weight prior to slaughter. When would this model be preferred over the one-way model?

A TWO-WAY MODEL: Suppose that for each of the 15 pigs on withholding time i, 5

pigs were taken from each of 3 farms. In this case, we might consider modelling the

laceration lengths as

Yijk = µ + τi + βj + εijk,

for i = 1, 2, 3, j = 1, 2, ..., 3, k = 1, 2, ..., 5. Here, Yijk denotes the laceration length for

the kth pig at the jth farm on the ith withholding time. This is an example of two-way

linear model. In this example, we might treat the farms as blocks. In experimental

design, two variables (here, treatment assignment and farm) are said to be confounded

when their effects cannot be distinguished from each other. One way to eliminate possible

confounding effects is with the use of blocking; it allows the experimenter to make

treatment comparisons under more homogeneous conditions.

A MULTIPLE REGRESSION MODEL: Let xi1 and xi2 denote the weight and body

temperature of pig i, respectively, prior to slaughter. Also, we define the two indicator
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variables xi3 and xi4 as follows:

xi3 =





1, pig i is assigned to treatment 0 hrs.

0, otherwise

xi4 =





1, pig i is assigned to treatment 12 hrs.

0, otherwise.

A multiple linear regression model takes the form

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi,

for i = 1, 2, ..., 45. The βj terms; j = 0, 1, ..., 4, are called regression coefficients and

εi denotes the random error associated with pig i. Note that there are two continuous

predictor variables in this model (x1 and x2). Also, note that if β2 = 0, this model is

simply a reparameterisation of the ANCOVA model when γ1 = γ2 = γ3 (equal slopes).

QUESTION : For each model, which hypotheses (in terms of the model parameters)

might the researcher be interested in testing?

1.2 Describing populations using distributions

TERMINOLOGY : A random variable, say, Y , is a variable whose value is determined

by chance. A random sample is usually denoted by Y1, Y2, ..., Yn; i.e., n measurements of

the variable Y . In statistics, we usually think of data as random variables or realisations

of random variables.

TERMINOLOGY : A random variable Y is called discrete if there are only a finite

(really, a countable) number of possible values that Y can assume. A random variable

Y is called continuous if it can assume any number in a certain interval of numbers.

TERMINOLOGY : For any random variable Y , discrete or continuous, there are two

functions that describe probabilities involving Y : a probability density function (pdf)

and a cumulative distribution function (cdf). The pdf and cdf are usually denoted
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by fY (y) and FY (y), respectively. The cdf (regardless of whether or not Y is discrete or

continuous) gives the probability

FY (y) = P (Y ≤ y).

1.2.1 Discrete distributions

THE DISCRETE CASE : The pdf gives probabilities of the form fY (y) = P (Y = y). It

must be that fY (y) ≥ 0, for all y, and
∑

A fY (y) = 1, where A denotes the set of all

possible values of Y .

NOTATION : We will (with rare exception) denote a random variable Y with a capital

letter; we denote an observed (or realised) value of Y as y, a lowercase letter. This is

standard notation.

REMARK : The function fY (y) is sometimes called a probability model, because it

serves as a mathematical description of a real life phenomenon. There are many differ-

ent probability models! Examples of discrete probability models include the binomial,

Poisson, negative binomial, hypergeometric, etc. Examples of continuous probability

models include the normal, gamma, Weibull, t, χ2, and F . In addition to the normal

distribution, we’ll pay particular attention to the t, χ2, and F distributions since they

are pervasive in applied statistics.

Example 1.2. The Poisson distribution is often used to model count data. Mathemat-

ics can show that the pdf of a Poisson distribution, with parameter λ, is given by

fY (y) =





λye−λ

y!
, y = 0, 1, 2, ...

0, otherwise.

The parameter λ determines the location and variability of the distribution of Y . Figure

1.2 displays the pdf of Y when λ = 5. The height of each bar equals fY (y) = P (Y = y).

For example, fY (2) = P (Y = 2) ≈ 0.084. What would a graph of the cumulative

distribution function (cdf) of Y look like?
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Figure 1.2: The Poisson probability density function when λ = 5.

TERMINOLOGY : Let Y be a discrete random variable with pdf fY (y). The expected

value or population mean of Y is given by

µ ≡ E(Y ) =
∑

all y

yfY (y).

EXPECTATIONS OF FUNCTIONS OF Y . Let g be a real-valued function and let Y

be a discrete random variable. Then, g(Y ) is a random variable and

E[g(Y )] =
∑

all y

g(y)fY (y).

TERMINOLOGY : Let Y be a discrete random variable with pdf fY (y). The population

variance of Y is given by

σ2 ≡ V (Y ) = E[(Y − µY )2] =
∑

all y

(y − µY )2fY (y),

where µY = E(Y ).
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1.2.2 Continuous distributions

CONTINUOUS CASE : Let Y be a continuous random variable with cdf FY (y). The

probability density function (pdf) for Y , denoted fY (y), is given by

fY (y) =
d

dy
FY (y),

provided that d
dy

FY (y) ≡ F ′
Y (y) exists. Furthermore,

FY (y) =

∫ y

−∞
fY (t)dt.

The function fY (y) is said to be valid if fY (y) ≥ 0 for all y and
∫

A
fY (y) = 1, where A

denotes the set of all possible values of Y .

RESULT : If Y is a continuous random variable with pdf fY (y) and cdf FY (y), then

P (a ≤ Y ≤ b) =

∫ b

a

fY (y)dy = FY (b)− FY (a).

Furthermore, P (Y = a) = 0, for any real constant a, since

P (Y = a) = P (a ≤ Y ≤ a) =

∫ a

a

fY (y)dy = 0.

Thus, for continuous random variables, probabilities are assigned to intervals with non-

negative probability, and specific points with zero probability. This is the key difference

between discrete and continuous random variables.

TERMINOLOGY : Let Y be a continuous random variable with pdf fY (y). The ex-

pected value or population mean of Y is given by

µ ≡ E(Y ) =

∫ ∞

−∞
yfY (y)dy.

EXPECTATIONS OF FUNCTIONS OF Y . Let g be a real-valued function and let Y

be a continuous random variable. Then, g(Y ) is a random variable and

E[g(Y )] =

∫ ∞

−∞
g(y)fY (y)dy.

PAGE 8
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TERMINOLOGY : Let Y be a continuous random variable with pdf fY (y). The pop-

ulation variance of Y is given by

σ2 ≡ V (Y ) = E[(Y − µY )2] =

∫ ∞

−∞
(y − µY )2fY (y)dy,

where µY = E(Y ).

PROPERTIES OF EXPECTATIONS : Let Y be a random variable with pdf fY (y), let

g, g1, g2, ..., gk denote real functions, and let c ∈ R be any constant. Then,

(a) E(c) = c

(b) E[cg(Y )] = cE[g(Y )]

(c) E[
∑k

j=1 gj(Y )] =
∑k

j=1 E[gj(Y )].

PROPERTIES OF VARIANCES : Let Y be a random variable with pdf fY (y), and

suppose a and b are real constants. Then,

(a) V (a) = 0

(b) V (a + bY ) = b2V (Y ).

1.3 The normal distribution

TERMINOLOGY : A random variable Y is said to have a normal distribution if its

pdf is given by

fY (y) =





1√
2πσ

e−
1
2

(
y−µ

σ

)2

, −∞ < y < ∞
0, otherwise.

NOTATION : Shorthand notation is Y ∼ N (µ, σ2). It is not difficult to show that

E(Y ) = µ and V (Y ) = σ2.

FACTS ABOUT ANY NORMAL DISTRIBUTION :

(a) The pdf is symmetric about µ; that is, for any real constant a, fY (µ − a) =

fY (µ + a). The points of inflection are located at y = µ± σ.

PAGE 9
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Figure 1.3: The standard normal distribution.

(b) A normal distribution can be “transformed” to a standard normal distribution.

(c) limy→±∞ fY (y) = 0.

TERMINOLOGY : A N (0, 1) distribution is called the standard normal distribution.

It is conventional notation to let Z denote the standard normal random variable; we often

write Z ∼ N (0, 1). The pdf of Z is given in Figure 1.3.

IMPORTANT : Tabled values of the cdf of Z are given in Appendix C (Table C.1) of

Rao. This table gives values of

1− FZ(z) = P (Z ≥ z) =

∫ ∞

z

1√
2π

e−z2/2dz,

for values of z ≥ 0.

STANDARDISATION : Suppose that Y ∼ N (µ, σ2). Then, the random variable

Z =
Y − µ

σ
∼ N (0, 1).
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FINDING NORMAL PROBABILITIES : Standarising each component of an event of

interest involving a normal random variable Y , we see that

P (y1 < Y < y2) = P

(
y1 − µ

σ
<

Y − µ

σ
<

y2 − µ

σ

)
= P

(
y1 − µ

σ
< Z <

y2 − µ

σ

)
.

Similarly, we have

P (Y < y) = P

(
Y − µ

σ
<

y − µ

σ

)
P

(
Z <

y − µ

σ

)
,

and

P (Y > y) = P

(
Y − µ

σ
>

y − µ

σ

)
= P

(
Z >

y − µ

σ

)
.

1.4 Independence, covariance and correlation

TERMINOLOGY : Two random variables Y1 and Y2 are said to be independent if any

event involving only Y1 is independent of any event involving only Y2.

REMARK : Independence is an important concept in statistics. This means that the

random aspect of one observation contains no information about the random aspect of

any other observation. There are mathematical ways to formalise this; however, for most

purposes in applied statistics, this intuitive understanding of independence is sufficient.

TERMINOLOGY : Suppose that Y1 and Y2 are random variables with means µ1 and µ2,

respectively. The covariance between Y1 and Y2 is given by

Cov(Y1, Y2) = E[(Y1 − µ1)(Y2 − µ2)] = E(Y1Y2)− µ1µ2

The covariance gives us information about how Y1 and Y2 are linearly related.

NOTES ON THE COVARIANCE :

• If Cov(Y1, Y2) > 0, then Y1 and Y2 are positively linearly related.

• If Cov(Y1, Y2) < 0, then Y1 and Y2 are negatively linearly related.

• If Cov(Y1, Y2) = 0, then Y1 and Y2 are not linearly related.
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FACT : If two random variables Y1 and Y2 are independent, then Cov(Y1, Y2) = 0.

TERMINOLOGY : Suppose that Y1 and Y2 are random variables with variances σ2
1 and

σ2
2, respectively. The quantity

ρY1,Y2 =
Cov(Y1, Y2)

σ1σ2

.

is called the correlation between Y1 and Y2. The correlation is often preferred to the

covariance since ρY1,Y2 is always between −1 and 1.

1.5 Means, variances, and covariances of linear combinations

TERMINOLOGY : Suppose that Y1, Y2, ..., Yn are random variables and that a1, a2, ..., an

are constants. Then,

U1 =
n∑

i=1

aiYi = a1Y1 + a2Y2 + · · ·+ anYn

is called a linear combination of the random variables Y1, Y2, ..., Yn.

MEAN OF A LINEAR COMBINATION :

E(U1) = E

(
n∑

i=1

aiYi

)
=

n∑
i=1

aiE(Yi)

VARIANCE OF A LINEAR COMBINATION :

V (U1) = V

(
n∑

i=1

aiYi

)
=

n∑
i=1

a2
i V (Yi) + 2

∑
i<j

aiajCov(Yi, Yj)

=
n∑

i=1

a2
i V (Yi) +

∑

i6=j

aiajCov(Yi, Yj)

If Y1, Y2, ..., Yn are independent random variables, then

V (U1) = V

(
n∑

i=1

aiYi

)
=

n∑
i=1

a2
i V (Yi),

since all the covariance terms are zero.
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COROLLARY : Suppose that Y1 and Y2 are random variables. Then

V (Y1 + Y2) = V (Y1) + V (Y2) + 2Cov(Y1, Y2)

V (Y1 − Y2) = V (Y1) + V (Y2)− 2Cov(Y1, Y2).

Note that when Y1 and Y2 are independent, V (Y1 + Y2) = V (Y1 − Y2) = V (Y1) + V (Y2).

COVARIANCE BETWEEN TWO LINEAR COMBINATIONS : Suppose that

U2 =
m∑

j=1

bjXj = b1X1 + b2X2 + · · ·+ bmXm,

where X1, X2, ..., Xm are random variables b1, b2, ..., bm are constants. Then, it follows

that

Cov(U1, U2) =
n∑

i=1

m∑
j=1

aibjCov(Yi, Xj).

MISCELLANEOUS FACTS : Suppose that Y , Y1, and Y2 are random variables. Then

(a) Cov(a1 + b1Y1, a2 + b2Y2) = b1b2Cov(Y1, Y2).

(b) Cov(Y1, Y2) = Cov(Y2, Y1)

(c) Cov(Y, Y ) = V (Y ).

IMPORTANT FACT : Suppose that Y1, Y2, ..., Yn are independent N (µi, σ
2
i ) random vari-

ables for i = 1, 2, ..., n, and let a1, a2, ..., an be non-random real constants. Then,

U1 = a1Y1 + a2Y2 + · · ·+ anYn ∼ N
(

n∑
i=1

aiµi,

n∑
i=1

a2
i σ

2
i

)
.

IMPORTANT PUNCHLINE : The distribution of a linear combination of independent

normal random variables is itself normally distributed! In fact, even if the random

variables are not independent, the distribution of a linear combination of normal random

variables is still normally distributed. In this case, what are the mean and variance for

the linear combination?
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Figure 1.4: The χ2 distribution with 4 degrees of freedom.

1.6 The χ2, t, and F distributions

THE χ2 DISTRIBUTION : The family of χ2 distributions possesses the following prop-

erties. We denote a χ2 distribution with ν degrees of freedom by χ2
ν .

• The family is indexed by a degree of freedom parameter ν (which often depends on

the sample size).

• Each χ2 distribution is continuous and, in general, skewed right.

• E(χ2
ν) = ν and V (χ2

ν) = 2ν.

IMPORTANT : Tabled values of the quantiles for the χ2 distributions are given in

Appendix C (Table C.3) of Rao. The table gives values of χ2
ν,α which satisfy

P (χ2
ν ≥ χ2

ν,α) = α

for different values of α.
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Figure 1.5: The t distribution with 4 degrees of freedom.

THEORETICAL FACTS :

• If Y ∼ N (0, 1), then Y 2 ∼ χ2
1.

• If Y1, Y2, ..., Yn are independent N (µi, σ
2
i ) random variables, then

n∑
i=1

Z2
i =

n∑
i=1

(
Yi − µi

σi

)2

∼ χ2
n.

THE t DISTRIBUTION : Suppose that Z ∼ N (0, 1) and that W ∼ χ2
ν . If Z and W are

independent, then the quantity

T =
Z√
W/ν

has a t distribution with ν degrees of freedom, hereafter denoted as tν .

FACTS ABOUT THE t FAMILY OF DISTRIBUTIONS :

• The family is indexed by a degree of freedom parameter ν (which often depends on

the sample size).

• Each distribution is continuous and symmetric about 0.
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• As ν → ∞, tν → N (0, 1); thus, when ν becomes larger, the tν and the N (0, 1)

distributions look more alike.

• E(tν) = 0 and V (tν) = ν
ν−2

for ν > 2.

• When compared to the standard normal distribution, the t distribution, in general,

is less peaked, and has more mass in the tails. Note that V (tν) > 1.

IMPORTANT : Tabled values of the quantiles for the t distributions are given in Appendix

C (Table C.2) of Rao. The table gives values of tν,α which satisfy

P (tν ≥ tν,α) = α

for different values of α.

THE F DISTRIBUTION : Suppose that W1 ∼ χ2
ν1

and that W2 ∼ χ2
ν2

. If W1 and W2

are independent, then the quantity

F =
W1/ν1

W2/ν2

has an F distribution with ν1 (numerator) and ν2 (denominator) degrees of freedom,

hereafter denoted by Fν1,ν2 .

FACTS ABOUT THE F FAMILY OF DISTRIBUTIONS :

• The family is indexed by two degree of freedom parameters ν1 and ν2.

• Each distribution is continuous and, in general, skewed right.

• t2ν ∼ F1,ν .

IMPORTANT : Tabled values of the quantiles for the F distributions are given in Ap-

pendix C (Table C.4) of Rao. The table gives values of Fν1,ν2,α which satisfy

P (Fν1,ν2 ≥ Fν1,ν2,α) = α

for different values of α. It is worth noting that

Fν1,ν2,α =
1

Fν2,ν1,1−α

.
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Figure 1.6: The F4,5 distribution.

1.7 Sampling distributions

TERMINOLOGY : Suppose that Y1, Y2, ..., Yn is a random sample from some popula-

tion modelled by fY (y). This means precisely that

(a) the random variables Y1, Y2, ..., Yn are independent, and

(b) the random variables Y1, Y2, ..., Yn all follow the same probability model fY (y); that

is, each Yi has the identical distribution.

The expression “Y1, Y2, ..., Yn is an iid sample from fY (y),” means that Y1, Y2, ..., Yn is

a random sample from a population where fY (y) is used to model Y .

NOTE : Throughout this course, we will assume that the population is infinite in size.

REMARK : For the remainder of the course, unless otherwise stated, we will assume that

Y1, Y2, ..., Yn may be viewed as an iid sample from a N (µ, σ2) distribution.
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DEFINITION : A statistic is a function of the random variables Y1, Y2, ..., Yn. It could

possibly depend on non-random constants, but it can not depend on unknown parameters.

THREE IMPORTANT STATISTICS :

• the sample mean

Y =
1

n

n∑
i=1

Yi

• the sample variance

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2

• the sample standard deviation

S =
√

S2 =

√√√√ 1

n− 1

n∑
i=1

(Yi − Y )2

AN IMPORTANT IDEA: Since Y1, Y2, ..., Yn are random variables, any statistic is also

a random variable! Thus, every statistic has, among other characteristics, a mean, a

variance, and its own probability distribution!

DEFINITION : The sampling distribution of a statistic is simply the probability dis-

tribution of it. It characterises how the statistic varies in repeated sampling. One of the

major goals in statistics is to construct and use sampling distributions!

ONE-SAMPLE RESULTS : Suppose that Y1, Y2, ..., Yn is an iid sample of N (µ, σ2) ob-

servations. Then

Y ∼ N (µ, σ2/n) and Z =
Y − µ

σ/
√

n
∼ N (0, 1).

Furthermore,
(n− 1)S2

σ2
∼ χ2

n−1 and t =
Y − µ

S/
√

n
∼ tn−1.

TWO-SAMPLE RESULTS : Suppose that we have two independent samples:

Y11, Y12, ..., Y1n1 ∼ iid N (µ1, σ
2
1)

Y21, Y22, ..., Y2n2 ∼ iid N (µ2, σ
2
2).
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Define

Y 1+ =
1

n1

n1∑
j=1

Y1j = sample mean for sample 1

Y 2+ =
1

n2

n2∑
j=1

Y2j = sample mean for sample 2

S2
1 =

1

n1 − 1

n1∑
j=1

(Y1j − Y 1+)2 = sample variance for sample 1

S2
2 =

1

n2 − 1

n2∑
j=1

(Y2j − Y 2+)2 = sample variance for sample 2.

Mathematics can show that
S2

1/σ
2
1

S2
2/σ

2
2

∼ Fn1−1,n2−1;

furthermore, if the two population variances σ2
1 and σ2

2 are equal; i.e., σ2
1 = σ2

2 = σ2, then

S2
1

S2
2

∼ Fn1−1,n2−1.

QUESTION : Each of these results assumes that we are sampling from normal distrib-

utions. What happens when Y1, Y2, ..., Yn do not follow a normal distribution? In this

case, it turns out that Y is still approximately normal when n is large.

THE CENTRAL LIMIT THEOREM : Suppose that Y1, Y2, ..., Yn are iid random vari-

ables with E(Yi) = µ and V (Yi) = σ2 < ∞ (note that we are not specifying a normal

population). Denote the sample mean by Y = 1
n

∑n
i=1 Yi and define

Zn =
Y − µ

σ/
√

n
.

Then, as n → ∞, the cumulative distribution function of Zn converges to the N (0, 1)

distribution function.

INTERPRETATION : The CLT implies that even if Y1, Y2, ..., Yn are non-normal, the

quantity Zn will still have an approximate N (0, 1) distribution, when n is large, and,

thus, the sample mean Y will still have an approximate N (µ, σ2/n) sampling distrib-

ution. In this case, is common to write Y ∼ AN (µ, σ2/n).
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1.8 Confidence intervals

TERMINOLOGY : A 100(1 − α) percent confidence interval for a parameter θ is a

pair of statistics θ̂L and θ̂U such that

P (θ̂L ≤ θ ≤ θ̂U) = 1− α,

where 0 < α < 1. We call 1− α the confidence coefficient.

FREQUENTIST INTERPRETATION : Before we see the data Y1, Y2, ..., Yn, the interval

(θ̂L, θ̂U) is random. This follows since θ̂L and θ̂U are random quantities. On the other

hand, θ is treated as a fixed parameter; it does not change. Thus, after we observe

the data y1, y2, ..., yn, the interval (θ̂L, θ̂U) is no longer random. Thus, we think about

confidence intervals in a repeated sampling context; namely, in repeated sampling, ap-

proximately 100(1−α) percent of the confidence intervals will contain the true parameter.

TERMINOLOGY : We call Q a pivot if its sampling distribution does not depend on

any unknown parameters.

CONFIDENCE INTERVAL FOR A NORMAL MEAN, σ2 KNOWN : Suppose that

Y1, Y2, ..., Yn iid N (µ, σ2
0), where µ is unknown and σ2

0 is known. The quantity

Q =
Y − µ

σ0/
√

n
∼ N (0, 1),

and, hence, is a pivot. Since Q ∼ N (0, 1), there exists a value zα/2 such that

1− α = P (−zα/2 < Q < zα/2)

= P

(
−zα/2 <

Y − µ

σ0/
√

n
< zα/2

)

= P

(
Y − zα/2 × σ0/

√
n︸ ︷︷ ︸bµL

< µ < Y + zα/2 × σ0/
√

n︸ ︷︷ ︸bµU

)

Thus, Y ± zα/2 × σ0/
√

n is a 100(1− α) percent confidence interval for µ.

CONFIDENCE INTERVAL FOR A NORMAL MEAN, σ2 UNKNOWN : Suppose that

Y1, Y2, ..., Yn are iid N (µ, σ2) observations, where both parameters are unknown. Then,

Y ± tn−1,α/2 × S/
√

n is a 100(1− α) percent confidence interval for µ.
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CONFIDENCE INTERVAL FOR A NORMAL VARIANCE : Suppose that Y1, Y2, ..., Yn

are iid N (µ, σ2) observations. The quantity

Q =
(n− 1)S2

σ2
∼ χ2

n−1,

and, hence, is a pivot. Thus, there exists values χ2
n−1,1−α/2 and χ2

n−1,α/2 such that

1− α = P (χ2
n−1,1−α/2 < Q < χ2

n−1,α/2)

= P

{
χ2

n−1,1−α/2 <
(n− 1)S2

σ2
< χ2

n−1,α/2

}

= P

{
(n− 1)S2

χ2
n−1,α/2︸ ︷︷ ︸bσ2

L

< σ2 <
(n− 1)S2

χ2
n−1,1−α/2︸ ︷︷ ︸bσ2

U

}
.

In this case, (
(n− 1)S2

χ2
n−1,α/2

,
(n− 1)S2

χ2
n−1,1−α/2

)

is a 100(1− α) percent confidence interval for σ2.

CONFIDENCE INTERVAL FOR THE DIFFERENCE OF TWO NORMAL MEANS :

Suppose that we have two independent samples (with common variance):

Y11, Y12, ..., Y1n1 ∼ iid N (µ1, σ
2)

Y21, Y21, ..., Y2n2 ∼ iid N (µ2, σ
2)

The quantity

t =
(Y 1+ − Y 2+)− (µ1 − µ2)

Sp

√
1
n1

+ 1
n2

∼ tn1+n2−2,

where

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
,

and, hence, is a pivot. A 100(1 − α) percent confidence interval for µ1 − µ2 is given by

(Y 1+ − Y 2+)± tn1+n2−2,α/2 × Sp

√
1
n1

+ 1
n2

.

A NOTE WORTH MENTIONING : When σ2
1 6= σ2

2, it turns out that

(Y 1+ − Y 2+)± tν,α/2

√
S2

1

n1

+
S2

2

n2

,
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where

ν =

(
S2

1

n1
+

S2
2

n2

)2

(
S2
1

n1

)2

n1−1
+

(
S2
2

n2

)2

n2−1

,

is an approximate 100(1− α) percent confidence for µ1 − µ2.

REMARK : Note that this two-independent-sample setup can be expressed in a different

way. Let Yij denote the jth replicate from a N (µi, σ
2) distribution. It then follows that,

for i = 1, 2 and j = 1, 2, ..., ni,

Yij = µ + τi + εij

= µi + εij,

where µi = µ + τi and εij ∼ iid N (0, σ2).

CONFIDENCE INTERVAL FOR THE RATIO OF TWO NORMAL VARIANCES :

Suppose that we have two independent samples:

Y11, Y12, ..., Y1n1 iid N (µ1, σ
2
1)

Y21, Y21, ..., Y2n2 iid N (µ2, σ
2
2).

A 100(1− α) percent confidence interval for σ2
2/σ

2
1 is

(
S2

2

S2
1

Fn1−1,n2−1,1−α/2,
S2

2

S2
1

Fn1−1,n2−1,α/2

)
.

1.9 Hypothesis tests

TERMINOLOGY : A hypothesis test is a procedure that enables us to draw conclusions

about parameter values. The four parts to any statistical test are (a) the null hypothesis,

denoted as H0, (b) the alternative (or researcher’s) hypothesis, denoted as H1, (c) the

test statistic, and (d) the rejection region.

TERMINOLOGY : A test statistic is a rule that is used to decide between H0 and H1.
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The rejection region specifies the values of the test statistic for which H0 is rejected.

The rejection region is usually located in tails of a well-known probability distribution.

PREVAILING RESULT : In a statistical test, if the test statistic falls in rejection region,

then we reject H0 and say that “the result is statistically significant.” All tests are

constructed in a way so that we know the test statistic’s sampling distribution when H0

is true. This construction will allow us to quantify the probabilities of making certain

types of mistakes.

TERMINOLOGY : Type I Error: Rejecting H0 when H0 is true. This event occurs

with probability α (the significance level for the test).

TERMINOLOGY : Type II Error: Not rejecting H0 when H1 is true.

STRATEGY : In any hypothesis testing situation, we fix α at something we can “live

with,” say α = 0.01, α = 0.05, α = 0.10, etc. Smaller values of α correspond to more

conservative tests (i.e., tests where it is harder to reject H0).

P VALUES : Rather than having formal rules for when to reject H0, one can report the

evidence against H0 numerically. This is done by reporting a P value. The P value is

computed under the assumption that H0 is true; thus, small values of P are evidence

against H0. Essentially, the P value is the smallest value of α for H0 is rejected. Thus,

if the P value for a hypothesis test is smaller than the α used in the test, H0 is rejected.

ONE SAMPLE t TEST : Suppose that Y1, Y2, ..., Yn are iid N (µ, σ2) observations, where

both parameters are unknown. Recall that, when µ = µ0,

t =
Y − µ0

SY

=
Y − µ0

S/
√

n
∼ tn−1.

Thus, we reject H0 : µ = µ0 if we observe a test statistic t that doesn’t follow the tn−1

distribution “as expected.” The term SY = S/
√

n is called the estimated standard

error of Y .

Example 1.3 (crabs.sas). It is thought that the body temperature of intertidal crabs

is less than the ambient temperature. Body temperatures were obtained from a random
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sample of n = 8 crabs exposed to an ambient temperature of 25.4 degrees C. Let Y

denote this measurement and y1, y2, ..., y8 denote the 8 measurements of Y . The data are

25.8, 24.6, 26.1, 24.9, 25.1, 25.3, 24.0, and 24.5. Assume that yi are iid N (µ, σ2) observa-

tions, where µ denotes the mean body temperature for the population of intertidal crabs

exposed to an ambient temperature of 25.4 degrees C. We wish to test, at α = 0.05, say,

H0 : µ = 25.4

versus

H1 : µ < 25.4.

This is a one-sided test. We have n = 8, and t7,0.95 = −1.8946 (from Table C.2). Simple

calculations show that y = 25.04 and s2 = 0.4798; thus, the one-sample t statistic is

t =
y − µ

sY

=
y − µ

s/
√

n
=

25.04− 25.4√
0.4798/8

= −1.48.

There is not enough evidence in the sample, at the five percent level, to suggest that the

mean body temperature of intertidal crabs exposed to air at 25.4 degrees Celcius is, in

fact, less than 25.4.

COMPUTING THE P VALUE : Note that from Table C.2, 0.05 < P (t7 < −1.48) < 0.10.

Since the P value is not smaller than the significance level α = 0.05, we do not have

enough evidence at the five percent level to refute H0. The exact P value is 0.0912.

COMPUTING A CONFIDENCE INTERVAL: Simple calculations show that, for the

crab data, a 95 percent confidence interval, based on the t7 distribution, is (24.58, 25.50).

Note that 25.4 falls in this interval. What does this suggest?

TWO SAMPLE t TEST : Suppose we have two independent random samples:

Y11, Y12, ..., Y1n1 iid N (µ1, σ
2)

Y21, Y22, ..., Y2n2 iid N (µ2, σ
2).

Recall that, when µ1 − µ2 = 0,

t =
Y 1+ − Y 2+

SY 1+−Y 2+

=
Y 1+ − Y 2+

Sp

√
1
n1

+ 1
n2

∼ tn1+n2−2,
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where

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

Thus, we reject H0 : µ1 − µ2 = 0 if we observe a test statistic t that does not follow

the tn1+n2−2 distribution “as expected.” The term SY 1+−Y 2+
is called the estimated

standard error of Y 1+ − Y 2+.

Example 1.4 (tomato.sas). In an experiment that compared a standard fertiliser

(A) and a modified fertiliser (B) for tomato plants, a gardener randomised 5 plants to

treatment A and 6 plants to treatment B. The following data are yields that were observed

in the experiment:

Standard A: 29.9 11.4 25.3 16.5 21.1

Modified B: 26.6 23.7 28.5 14.2 17.9 24.3

The gardener wants to determine whether or not there is a difference in the two fertilisers.

Assume that yields arise from two independent normal populations, let A = population

1, and let B = population 2. We will take α = 0.05 and test

H0 : µ1 − µ2 = 0

versus

H1 : µ1 − µ2 6= 0.

This is a two-sided test. We have n1 = 5, n2 = 6, so that n1 + n2 − 2 = 9, and

t9,0.025 = 2.2622 (Table C.2). Standard calculations show

y1+ = 20.84 y2+ = 22.53

s2
1 = 52.50 s2

2 = 29.51

s2
p =

4(52.50) + 5(29.51)

9
= 39.73.

Thus, the two-sample t statistic is given by

t =
y1+ − y2+

sp

√
1
n1

+ 1
n2

=
20.84− 22.53√
39.73

(
1
5

+ 1
6

) = −0.44.
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There is not enough evidence at the five percent significance level to suggest the fertilisers

are different. The two-sided P value is 0.6677. Thus, H0 would not be rejected at any

reasonable significance level.

1.10 Matched-pairs experiments

In the last section, when testing for the difference in two normal means, it was necessary

that the two samples be independent; this is a requirement for the underlying math-

ematical theory to be valid. The fact that the samples are assumed independent is a

consequence of experimental design − the individuals in each sample do not overlap

and were assigned treatments at random. If we design the experiment differently, then,

as one should expect, different methods will be appropriate. We now consider an experi-

mental design where we make comparisons within pairs of individuals that may tend to

be “more alike” than other pairs.

Example 1.5 (sbp.sas). A certain stimulus is thought to produce an increase in mean

systolic blood pressure (SBP) in middle-aged men.

DESIGN ONE : Take a random sample of men, then randomly assign each man to receive

the stimulus or not (so the group of men that receives the treatment and the group that

did not could be thought of as two independent samples). In this design, methods of

the previous section would be appropriate.

DESIGN TWO : Consider an alternative design, the so-called matched-pairs design.

Rather than assigning men to receive one treatment or the other (stimulus/no stimulus),

obtain a response from each man under both treatments! That is, obtain a random

sample of middle-aged men and take two readings on each man, with and without the

stimulus. In this design, because readings of each type are taken on the same man, the

difference between before and after readings on a given man should be less variable than

the difference between a before-response on one man and an after-response on a different

man. The man-to-man variation inherent in the latter difference is not present in the
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Table 1.1: Sources of variation present in different designs.

Design Type of Difference Sources of Variation

Independent samples among men among men, within men

Matched pairs setup within men within men

difference between readings taken on the same subject!

ADVANTAGE OF MATCHED PAIRS : In general, by obtaining a pair of measurements

on a single individual (e.g., man, rat, pig, plot, tobacco leaf, etc.), where one of the

measurements corresponds to treatment 1 and the other measurement corresponds to

treatment 2, you eliminate the variation among the individuals. Thus, you may com-

pare the treatments (e.g., stimulus/no stimulus, ration A/ration B, etc.) under more

homogeneous conditions where only variation within individuals is present (that is, the

variation arising from the difference in treatments).

REMARK : In some situations, of course, pairing might be impossible or impractical (e.g.,

destructive testing in manufacturing, etc.). However, in a matched-pairs experiment, we

still may think of two populations; e.g., those of all men with and without the stimulus.

What changes in this setting is really how we have “sampled” from these populations.

The two samples are no longer independent, because they involve the same individual.

A NOTE ON RANDOMISATION : In matched-pairs experiments, it is common prac-

tice, when possible, to randomise the order in which treatments are assigned. This may

eliminate “common patterns” (that may confound our ability to determine a treatment

effect) from always following, say, treatment A with treatment B. In practice, the exper-

imenter could flip a fair coin to determine which treatment is applied first. If there are

carry-over effects that may be present, these would have to be dealt with accordingly.

We’ll assume that there are no carry-over effects as a result from applying one or the

other treatments in our discussion here.

IMPLEMENTATION : Matched-pairs designs are analysed by looking at the difference
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Table 1.2: Systolic blood pressure data.

Subject j Before (Y1) After (Y2) Difference (Dj = Y1j − Y2j)

1 120 128 −8

2 124 131 −7

3 130 131 −1

4 118 127 −9

5 140 132 8

6 128 125 3

7 140 141 −1

8 135 137 −2

9 126 118 8

10 130 132 −2

11 126 129 −3

12 127 135 −8

in responses of the two treatments. Specifically, compute

Dj = Y1j − Y2j,

for each subject j = 1, 2, ..., n. For the SBP example, the data in Table 1.2 are the before

and after SBP readings for the n = 12 middle-aged men in the experiment. To remind

ourself, we could think of the mean of the population of differences as µ1 − µ2, where

µ1 denotes the mean before-stimulus reading and µ2 denotes the mean after-stimulus

reading. We, thus, want to perform the test

H0 : µ1 − µ2 = 0

versus

H1 : µ1 − µ2 < 0.

Note that by computing the data differences d1, d2, ..., d12, we have now turned this into

a “one-sample problem.” That is, we are testing hypotheses concerning the value of a

single population mean µ1 − µ2, the mean difference between the two treatments.
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ANALYSIS : To perform a matched pairs analysis, we compute the one-sample t test on

the observed data differences D1, D2, ..., Dn. We compute the sample mean and variance

of D1, D2, ..., Dn just like before; i.e.,

D =
1

n

n∑
i=1

Di

S2
D =

1

n− 1

n∑
i=1

(Di −D)2

The estimated standard error for the sample mean D is, by analogy to the one-sample

case,

SD =

√
S2

D

n
=

SD√
n

.

We thus have the matched-pairs test statistic:

t =
D

SD

.

For an α level test, we reject H0 in favour of a two-sided alternative if t > tn−1,α/2 or

t < −tn−1,α/2. One sided rejection regions are formed analogously.

For our SBP data, straightforward calculations show that d = −1.833, s2
D = 33.97, and

sD = 5.83. Hence,

t =
d

sD

=
d

sD/
√

n
=

−1.833

5.83/
√

12
= −1.09.

For our one-sided alternative (i.e., examining whether or not the after-readings have

higher mean than the before-readings), we would not reject H0 at the α = 0.05 level

since −1.09 is not smaller than the critical value t11,0.95 = −1.796. The evidence in these

data is not strong enough to suggest that the stimulus raises SBP in middle-aged men.

REMARK : The concept of pairing observations is a special form of blocking. As dis-

cussed earlier, this idea is an important foundation of experiments in biology, agriculture,

engineering, and other applications. The basic idea is that we are limiting the effect of a

potential source of variation so that the real differences, if they exist, are more likely to

be detected.
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1.11 A brief introduction to linear models

We have already introduced different models for explaining an observation on a ran-

dom variable Y . All models involved a deterministic part; e.g., µ + τi, β0 + β1xi1 +

β2xi2 + β3xi3 + β4xi4, etc. and a stochastic (i.e., random) error term ε representing

the unexplained variability inherent in an observation that makes it different from the

deterministic part of the model.

A SIMPLE LINEAR MODEL: Perhaps the easiest linear model representation is

Yi = µ + εi.

This simple model is a useful representation that may be used as a framework for under-

standing sources of variation.

RECALL: In the last section, we learned about a design involving the pairing of exper-

imental units as an alternative to the design in which observations are obtained from

two independent samples. Such a model formalises the idea that the paired design elim-

inates the effect of variation across pairs of experimental units on the hypothesis test.

To see this, consider a model for the case where an experiment is conducted with two

independent samples, one from each of two populations. An observation from such an

experiment is Yij, where as before, we mean the observation from the jth experimental

unit from the ith sample. We may think of Yij in terms of the following linear model:

Yij = µ + τi + εij,

for i = 1, 2 and j = 1, 2, ..., ni. In this model, µ may be thought of as the overall

mean; that is, the mean response we would get before the treatments are applied. The

parameter τi may be thought of as a treatment effect; that is, the change in mean

that results from applying treatment i. The random error εij represents everything

else−sampling variation, biological differences in individuals−anything else unexplained

that makes Yij different from the mean of its population, µi = µ+ τi. Thus, this includes

all variation among experimental units, from all possible sources.
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Now, consider an appropriate model for the case where an experiment is conducted

according to a matched-pairs design. If we use this design, we have a legitimate basis

for pairing experimental units because they are “alike” in some way. Thus, we may think

of two ways in which experimental units may vary−by pairs and within pairs. An

observation from such an experiment is again Yij where now the subscripts represent the

observation for treatment i from the jth pair. The model is

Yij = µ + τi + ρj + εij.

In this model, the interpretations of µ and τi are the same as they were before in the

two-independent sample model. The difference is the addition of the term ρj. This term

may be thought of as the “effect” of being in the jth pair; that is, observations on a

particular pair j differ from the mean for the treatment in question by an amount unique

to pair j. The unexplained variation (the variation not accounted by treatment i and

pair j) is represented by εij.

COMPARISON : Comparing the two models, we see now the difference. In the two-

independent-sample model, there is no term ρj, because there is no link between obser-

vations in each sample (they are all independent!). By pairing, when appropriate, we are

“explaining” more of the variation by something we can identify, leaving less unexplained

in the error term εij.

Finally, note that for the matched-pairs experiment model, if we consider the difference

for the jth pair, we get

Dj = Y1j − Y2j

= (µ + τ1 + ρj + ε1j)− (µ + τ2 + ρj + ε2j)

= (τ1 − τ2) + (ε1j − ε2j).

That is, the effect of ρj disappears! This makes sense: the whole idea of pairing (blocking)

was to eliminate variation across pairs of experimental units. By controlling this variation

in using the matched-pairs set up, this should lead to more precise inferences.
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2 One-Way Classification and Analysis of Variance

Complimentary reading from Rao: Chapter 8 (§ 8.1-8.7).

2.1 Introduction

The purpose of an experiment is usually to investigate differences between or among

treatments. In a statistical model framework, we may do this by comparing the popula-

tion means of the responses to each treatment. We have already discussed designs for

comparing two means; namely, a two-independent-sample design and a matched-

pairs design. In this chapter, we consider the comparison of more than two treatment

means in a one-way layout setting.

PREVAILING THEME : In order to detect treatment mean differences, we must try to

control the effects of experimental error so that any variation we observe can be at-

tributed to the effects of the treatments rather than to differences among the experimental

units to which treatments were applied.

RECALL: We discussed the idea that designs involving meaningful grouping of experi-

mental units (i.e., blocking) can help reduce the effects of experimental error, by iden-

tifying systematic components of variation among experimental units that may be due

to something besides inherent biological variation among them. The matched-pairs de-

sign for comparing two treatments is an example of such a design. In this situation,

experimental units themselves are treated as blocks.

The analysis of data from experiments involving blocking in scenarios with more than

two treatments, which are representative of many experiments in practice, will be covered

later. We start by discussing a simpler setting; that is, the one-way classification

model. This is basically just an extension of the two-independent-sample design to

more than two treatments.
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ONE-WAY CLASSIFICATION : Consider an experiment to compare t ≥ 2 treatment

means, set up as follows:

• We obtain a random sample of experimental units and randomly assign them to

treatments. In this situation, samples corresponding to the treatment groups are

independent (i.e., the experimental units in each treatment sample are unrelated).

• We do not attempt to group experimental units according to some factor (e.g.,

location, gender, initial weight, variety, etc.).

REMARK : In this design, the only way in which experimental units may be “classified”

is with respect to which treatment they received. Hence, such an arrangement is often

called a one-way classification. When experimental units are thought to be “basically

alike” (i.e., no apparent grouping seems appropriate), then the experimental error only

consists of the variation among the experimental units themselves (that is, there are no

other systematic sources of variation). Of course, if we were to group individuals in

a given way, when, in reality, there was no grouping necessary, we would not add any

precision to the experiment.

Example 2.1. In a lab experiment, we are to compare the viscosities among four

different chemical mixtures: A, B, C, and D. The four mixtures are randomly assigned

to 48 beakers (the experimental units); each mixture to 12 beakers. All the beakers are

pretty much the same, so we would not expect variation from other systematic sources

before the mixtures (treatments) are applied. In this situation, grouping beakers would

be pointless since there is no identifiable reason for doing so.

COMPLETE RANDOMISATION : If there is no basis for grouping, all experimental

units should have an equal chance of receiving any of the treatments. When randomi-

sation is carried out in this way, it is called complete randomisation; such an ex-

perimental design is called a completely randomised design (CRD). In situations

where grouping is involved, different randomisation schemes will be appropriate, as we

will discuss later.
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Figure 2.7: Viscosity measurements for t = 4 chemical mixtures.

ADVANTAGES OF THE ONE-WAY CLASSIFICATION :

• Simplicity of implementation and analysis.

• The size of the experiment is limited only by the availability of experimental units.

No special considerations for different types of experimental units are required.

DISADVANTAGES OF THE ONE-WAY CLASSIFICATION :

• Experimental error, our assessment of the non-systematic variation believed to

be inherent among experimental units, includes all sources.

• If it turns out, unexpectedly perhaps, that some of the variation among experi-

mental units is indeed due to a systematic component, it will not be possible to

“separate it out” of experimental error, and comparisons may be impossible. Thus,

we run the risk of low precision and power if something unexpected arises.
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2.2 Analysis of variance for the one-way classification

NOTATION : Let t denote the number of treatments to be compared, and, as before, let

Yij = response on the jth experimental unit on treatment i,

for i = 1, 2, ..., t and j = 1, 2, ..., ni. Here, ni is the number of replications for treatment

i. When n1 = n2 = · · · = nt = n, say, we call this a balanced design; otherwise, the

design is said to be unbalanced. Let N = n1 + n2 + · · ·+ nt. If the design is balanced,

then N = nt. Define

Yi+ =

ni∑
j=1

Yij = sample total for treatment i

Y i+ =
1

ni

ni∑
j=1

Yij = sample mean for treatment i

S2
i =

1

ni − 1

ni∑
j=1

(Yij − Y i+)2 = sample variance for treatment i

Y++ =
t∑

i=1

ni∑
j=1

Yij = grand total

Y ++ =
1

N

t∑
i=1

ni∑
j=1

Yij = grand mean

STATISTICAL HYPOTHESIS : Our first goal is to develop a procedure for testing

H0 : µ1 = µ2 = · · · = µt

versus

H1 : the µi are not all equal.

Note that the null hypothesis says that there is “no treatment difference” or “no treatment

effect.” The alternative hypothesis merely says that a difference among the t means exists

somewhere (but does not specify how the means are different). The underlying theory

needed to conduct this test is now given.
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DATA AND ASSUMPTIONS : We have independent random samples from t ≥ 2 nor-

mal distributions, each of which has the same variance (but possibly different means):

Sample 1 Y11, Y12, ..., Y1n1 iid N (µ1, σ
2)

Sample 2 Y21, Y22, ..., Y2n2 iid N (µ2, σ
2)

...
...

Sample t Yt1, Yt2, ..., Ytnt iid N (µt, σ
2)

MAIN POINT : The ANOVA procedure is formulated by deriving two independent es-

timators the common variance σ2. These two estimators are formed by (1) looking at

the variance of the observations within samples, and (2) looking at the variance of the

sample means across the t samples.

THE “WITHIN” ESTIMATOR FOR σ2: To estimate the common σ2 within samples,

we take a weighted average (weighted by the sample sizes) of the t sample variances; that

is, we “pool” all variance estimates together to form one estimate. Define

SS[E] = (n1 − 1)S2
1 + (n2 − 1)S2

2 + · · ·+ (nt − 1)S2
t

=
t∑

i=1

ni∑
j=1

(Yij − Y i+)2

︸ ︷︷ ︸
(ni−1)S2

i

.

We call SS[E] the error sum of squares. Under the normality assumption, recall that

for each i,
(ni − 1)S2

i

σ2
∼ χ2

ni−1.

Because the samples are independent, it follows (why?) that

SS[E]

σ2
=

t∑
i=1

(ni − 1)S2
i

σ2
∼ χ2

N−t.

Since, in general, the mean of a chi-square random variable is its degrees of freedom, we

have that

E

(
SS[E]

σ2

)
= N − t;
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hence, defining

MS[E] =
SS[E]

N − t
,

it follows that E(MS[E]) = σ2. Note that MS[E] is an unbiased estimator of σ2

regardless of whether or not the means µ1, µ2, ..., µt are equal. MS[E] is our first point

estimator for σ2. We call MS[E] the mean squared error.

THE “ACROSS” ESTIMATOR FOR σ2: To derive the “across-sample” estimator, we

will assume a common sample size n1 = n2 = · · · = nt = n (this just simplifies the math-

ematics; however, the final result gleaned from this discussion still holds for unbalanced

designs). Recall that if a sample arises from a normal population, then the sample mean

is also normally distributed; that is, Y i+ ∼ N (µi, σ
2/n).

NOTE : If all the treatment means are equal to a common value, say µ; i.e., H0 is true,

then we know that Y i+ ∼ N (µ, σ2/n), for each i = 1, 2, ..., t. Thus, if H0 is really true,

we may view the t sample means Y 1+, Y 2+, ..., Y t+ as being just an iid sample, of size t,

from a normal population with mean µ and variance σ2/n.

REVELATION : In light of this last remark, consider constructing the sample variance

of our “random sample,” Y 1+, Y 2+, ..., Y t+. This sample variance is given by

1

t− 1

t∑
i=1

(Y i+ − Y ++)2 (2.1)

and has expectation

E

[
1

t− 1

t∑
i=1

(Y i+ − Y ++)2

]
= σ2/n.

Hence, it follows that MS[T], where

MS[T] =
1

t− 1

t∑
i=1

n(Y i+ − Y ++)2

︸ ︷︷ ︸
SS[T]

,

is an unbiased estimator of σ2; i.e., E(MS[T]) = σ2, when H0 is true. We call SS[T] the

treatment sums of squares and MS[T] the mean squared for treatments. MS[T]

is our second point estimator for σ2. Recall that MS[T] is an unbiased estimator of σ2
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only when H0 : µ1 = µ2 = · · · = µt is true (this is important!). If we have different

sample sizes, we simply adjust MS[T] to

MS[T] =
1

t− 1

t∑
i=1

ni(Y i+ − Y ++)2

︸ ︷︷ ︸
SS[T]

This is still an unbiased estimator for σ2 when H0 is true.

SUMMARY : We have derived two unbiased estimators for σ2:

• the first (within), MS[E], is not affected by whether or not the means are different

(i.e., it is unbiased for σ2 regardless of whether or not H0 is true). This estimate

reflects how individual observations differ from their means, regardless of the values

of those means. Thus, MS[E] reflects only variation attributable to how individuals

differ among themselves.

• the second (across), MS[T], is derived assuming that the means are the same (i.e.,

assuming that H0 is true), and is affected by whether or not the means are different.

This estimate MS[T] reflects not only how individual observations differ (through

their sample means), but also how the treatment means might differ.

IMPLICATION : We derived MS[T] under the assumption that H0 was true. Thus, if

H0 really is true (i.e., there are no differences in treatment means), we would expect

MS[T] and MS[E] to be “close.” On the other hand, if H0 really is not true, one would

expect that MS[T] be larger than MS[E]. With this in mind, consider forming the ratio

F = MS[T]/MS[E]. We should now see that if

• H0 is true, F should be close to one.

• H0 is not true, F should be (perhaps much) larger than one.

CONCLUSION : Large values of the F ratio are evidence against H0.
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THE SAMPLING DISTRIBUTION OF F : Recall that SS[E]/σ2 ∼ χ2
N−k always. In

addition, when H0 is true (assuming a common n),

SS[T]

σ2
=

∑t
i=1 n(Y i+ − Y ++)2

σ2
=

∑t
i=1(Y i+ − Y ++)2

σ2/n
∼ χ2

t−1.

Thus, SS[T]/σ2 ∼ χ2
k−1 when H0 is true (this statement is also true when different

sample sizes are used). Furthermore, SS[T] and SS[E] are independent statistics (why?).

Thus, when H0 is true,

F =
MS[T]

MS[E]
=

SS[T]
σ2 /(t− 1)

SS[E]
σ2 /(N − t)

∼ Ft−1,N−t.

Putting this all together, we see that H0 is rejected when the test statistic F =

MS[T]/MS[E] falls in the upper tail of the Ft−1,N−t distribution. If we want to perform

a test at significance level α, the rejection region is given by RR = {F : F > Ft−1,N−t,α},
where Ft−1,N−t,α is the 1 − α quantile of the Ft−1,N−t distribution. Note that this is a

one-sided, upper tail rejection region. As you probably suspect, P values are computed

as areas under the Ft−1,N−t distribution.

PRESENTATION : We can amalgamate all of this information into an ANOVA table.

The form of the ANOVA table for the one-way classification model is given in Table 2.3.

Table 2.3: ANOVA table for the one-way layout.

Source df SS MS F

Treatments t− 1 SS[T] MS[T] = SS[T]
t−1

F = MS[T]
MS[E]

Error N − t SS[E] MS[E] = SS[E]
N−t

Total N − 1 SS[TOT]

NOTES ON THE ANOVA TABLE STRUCTURE :

• It is not difficult to show that

SS[TOT] = SS[T] + SS[E].
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SS[TOT] may be thought of as measuring how observations vary about the overall

mean, without regard to treatments; that is, it measures the total variation in all

the data. SS[TOT] can be partitioned into two independent components:

– SS[T], measuring how much of the total variation is due to the treatments

– SS[E], measuring the remaining variation, which we attribute to inherent vari-

ation among the individuals.

• the degrees of freedom add down.

• in general, mean squares are formed by dividing sums of squares by the correspond-

ing degrees of freedom.

COMPUTING FORMULAE : To summarise, we now provide computing formulae for all

the sums of squares. Here, we are assuming that the sample sizes, ni, are different; if

they are all equal, just replace ni with the common n. First, the correction term for

the overall mean is given by

CM =
1

N
Y 2

++ =
1

N

( k∑
i=1

ni∑
j=1

Yij

)2

= NY
2

++.

Sums of squares may be computed as follows

SS[TOT] =
t∑

i=1

ni∑
j=1

(Yij − Y ++)2 =
t∑

i=1

ni∑
j=1

Y 2
ij − CM,

SS[T] =
t∑

i=1

ni(Y i+ − Y ++)2 =
t∑

i=1

1

ni

( ni∑
j=1

Yij

︸ ︷︷ ︸
Yi+

)2

− CM

SS[E] =
k∑

i=1

ni∑
j=1

(Yij − Y i+)2 = SS[TOT]− SS[T].

Example 2.2 (pea.sas). The following data record the length of pea sections, in ocular

units (×0.114 mm), grown in tissue culture with auxin (a plant hormone) present. The

purpose of the experiment was to test the effects of the addition of various sugars on

growth as measured by length. Pea plants were randomly assigned to one of t = 5
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Figure 2.8: Pea section data for t = 5 treatments.

treatment groups: control (no sugar added), 2% fructose added, 1% glucose and 1%

fructose added, 2% glucose added, and 2% sucrose added. Ten observations (ni = 10)

were obtained for each group of plants (a balanced design). In all, N = 50 pea plants

were used; lengths are given in Table 2.4.

NOTE : Here, the individual plants are the experimental units, and we are applying

the sugars (treatments) to the plants using complete randomisation.

RECALL: Our assumptions for the one-way layout are that (a) the samples are inde-

pendent (how can this be achieved), (b) the measurements (i.e., growths) are normally

distributed and (c) the measurements have constant variance. Do you think these

are good assumptions here? How can we check this assumptions?

HAND CALCULATIONS : We calculate (following steps on page 287-8 Rao)

CM =
1

N
Y 2

++ =
1

N

( k∑
i=1

ni∑
j=1

Yij

)2

=
1

50
(3097)2 = 191828.18
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Table 2.4: Pea plant experiment data.

Control 2% fru 1%/1% g/f 2% glu 2% suc

75 58 58 57 62

67 61 59 58 66

70 56 58 60 65

75 58 61 59 63

65 57 57 62 64

71 56 56 60 62

67 61 58 60 65

67 60 57 57 65

76 57 57 59 62

68 58 59 61 67

Yi+ 701 582 580 593 641 Y++ = 3097

Y i+ 70.1 58.2 58.0 59.3 64.1 Y ++ = 61.94

and
t∑

i=1

ni∑
j=1

Y 2
ij = 752 + 582 + 582 + · · ·+ 612 + 672 = 193161.00

which gives

SS[TOT] =
t∑

i=1

ni∑
j=1

Y 2
ij − CM = 193161.00− 191828.18 = 1332.82.

Also, we have the treatment sums of squares

SS[T] =
t∑

i=1

1

ni

( ni∑
j=1

Yij

︸ ︷︷ ︸
Yi+

)2

− CM

=
1

10
(7012 + 5822 + 5802 + 5932 + 6412)− 191828.18 = 1077.32.

Finally, the error sums of squares is found by subtraction

SS[E] = SS[TOT]− SS[T] = 1332.82− 1077.32 = 245.50.
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Table 2.5: Analysis of variance: Pea section data.

Source df SS MS F

Treatments 4 1077.32 269.33 49.37

Error 45 245.50 5.46

Total 49 1322.82

We also have t− 1 = 4 and N − t = 45, so that

MS[T] =
1077.32

4
= 269.33, MS[E] =

245.50

45
= 5.46, F =

MS[T]

MS[E]
= 49.37.

ANALYSIS : The ANOVA table for the pea-section data is given in Table 2.5. To perform

the hypothesis test for differences among the treatment means; i.e., to test

H0 : µ1 = µ2 = · · · = µ5

versus

H1 : the µi are not all equal,

where µi denotes the mean growth for treatment i, we can compare F to the appropriate

critical value from the F table (Table C.4 in Rao). Using a significance level of α = 0.05,

we have

2.58 = F4,50,0.05 < F4,45,0.05 < F4,40,0.05 = 2.61,

so that 49.37 > F4,45,0.05. Thus, we reject H0 and conclude there is (overwhelming)

evidence, at the α = 0.05 level, that the mean lengths of pea stems are different depending

upon which (if any) sugar was added. The P value for this test, the area to the right of

49.37 on the F4,45 density curve is < 0.0001.

2.3 Linear models for the one-way classification

In a one-way classification model, recall that we have independent random samples from

t ≥ 2 normal distributions, each of which has the same variance. Schematically, we can

PAGE 43



CHAPTER 2 STAT 3601

envision our data as follows:

Sample 1 Y11, Y12, ..., Y1n1 iid N (µ1, σ
2)

Sample 2 Y21, Y22, ..., Y2n2 iid N (µ2, σ
2)

...
...

Sample t Yt1, Yt2, ..., Ytnt iid N (µt, σ
2)

MEANS MODEL: In terms of a linear model, we can express this setup as

Yij = µi + εij,

for i = 1, 2, ..., t and j = 1, 2, ..., ni, where µi denotes the mean of treatment i and εij ∼
iid N (0, σ2). This is sometimes called a one-way means model, since the parameters

µ1, µ2, ..., µt are the means of the t population distributions.

LEAST SQUARES ESTIMATION : We now develop estimators for the parameters

µ1, µ2, ..., µt in the one-way means model above using the method of least squares.

To find the least squares estimators of µ1, µ2, ..., µt, we minimise

t∑
i=1

ni∑
j=1

ε2
ij =

t∑
i=1

ni∑
j=1

(Yij − µi)
2

with respect to µ1, µ2, ..., µt. This is a t dimensional minimisation problem, and straight-

forward differentiable calculus methods will apply here. The appropriate values are so-

lutions to the t simultaneous equations (sometimes called the normal equations)

∂

∂µi

t∑
i=1

ni∑
j=1

(Yij − µi)
2 = 0,

for i = 1, 2, ..., t. It is easy to show (try it!) that these minimisers are given by µ̂i = Y i+.

That is, Y i+ is the least squares estimator of µi, for i = 1, 2, ..., t.

EFFECTS MODEL: We can also express the one-way classification model as

Yij = µ + τi + εij,

for i = 1, 2, ..., t and j = 1, 2, ..., ni, where µ denotes the overall mean, τi denotes the

effect of receiving treatment i, and εij ∼ iid N (0, σ2). This is sometimes called a one-way

effects model, since the parameters τ1, τ2, ..., τt represent effects rather than means.
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COMPARISON : Structurally, there is no difference between the means model and effects

model. The only difference is in the interpretation. In fact, starting with the effects model

and letting µi = µ + τi, we arrive back at the means model. Put another way, the two

models are simply reparameterisations of one another.

LEAST SQUARES ESTIMATION : With the one-way effects model, we now derive

the least squares estimators of µ and the τi’s. To find the least squares estimators

of µ, τ1, τ2, ..., τt, we minimise

t∑
i=1

ni∑
j=1

ε2
ij =

t∑
i=1

ni∑
j=1

(Yij − µ− τi)
2

with respect to µ, τ1, τ2, ..., τt. This is now a t+1 dimensional minimisation problem. We

proceed as before; appropriate values solve the t + 1 equations

∂

∂µ

t∑
i=1

ni∑
j=1

(Yij − µ− τi)
2 = 0

∂

∂τi

t∑
i=1

ni∑
j=1

(Yij − µ− τi)
2 = 0 i = 1, 2, ..., t.

This yields the following normal equations (verify!):

Nµ + n1τ1 + n2τ2 + · · ·ntτt = Y++

n1µ + n1τ1 = Y1+

n2µ + n2τ2 = Y2+

...

ntµ + ntτt = Yt+.

AN APPARENT PROBLEM : Notice that if we add the last t normal equations above,

we get the first one. Thus, the normal equations are not linearly independent, and,

hence, no unique solution for µ, τ1, τ2, ..., τt exists. In fact, there are infinitely many

solutions for µ, τ1, τ2, ..., τt!

TERMINOLOGY : Mathematically speaking, a model that contains components that

can not be estimated uniquely is said to be overparameterised. The one-way effects

model Yij = µ + τi + εij is an example of such a model.
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SIDE CONDITIONS : One way to obtain a unique solution to the normal equations is

to impose certain side conditions or constraints on the parameters. Basically, these

are just extra conditions that are specified so that the normal equations can be solved

uniquely. In fact, fundamentally, one choice of side conditions is as good as any other!

One common side condition used in the one-way layout is

t∑
i=1

niτi = 0.

Using this constraint, we can obtain a unique solution to the normal equations (verify!)

µ̂ = Y ++

τ̂i = Y i+ − Y ++, i = 1, 2, ..., t.

I want to emphasise that this side condition is not unique; in fact, there are infinitely many

side conditions one could impose to “estimate” the parameters. Another commonly-used

side condition (which is used by SAS) is to specify τt = 0. In this case (verify!),

µ̂ = Y t+

τ̂i = Y i+ − Y t+, i = 1, 2, ..., t− 1.

Note that the “estimates” under both constraints are different!

REMARK : At first glance, this may seem unfortunate; namely, that different side con-

ditions lead to different least-squares estimates. All the restriction does is impose a

particular interpretation on our linear model. For example, the condition
∑t

i=1 niτi = 0

goes along with the interpretation of the τi as “deviations” from an overall mean. The

treatments “affect” the response in different “directions;” some of the τi must be negative

and others positive, for them to all sum to zero.

ESTIMABLE FUNCTIONS : There are certain functions of the model parameters that

are always uniquely estimated, regardless of the side conditions used; these are called

estimable functions. Estimability is an important concept in the theory of linear models.

EXAMPLE : The reason we didn’t have non-unique solutions with the means model is

that the normal equations could be solved uniquely. In addition, in the means model,
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we saw that µi was uniquely estimated by µ̂i = Y i+. However, in the effects model,

with any suitable side condition, it turns out that µi = µ + τi is also uniquely estimated

by Y i+, even though, individually, µ and τi are not estimable (verify!). The function

µi ≡ µ + τi is an example of an estimable function in the effects model because it is

always uniquely estimated. Those parametric functions (e.g., µ, τi, τi + τi′ , etc.) whose

least-squares estimates change with different side conditions are not estimable.

2.4 Model diagnostics

Recall our assumptions in the usual one-way layout; namely, (a) the observed responses

are independent random samples from t populations, (b) the populations have normal

distributions, and (c) the population variances are equal. We convey these assumptions

in the error term εij by saying “εij ∼ iid N (0, σ2).” Independence is hopefully conferred

by the design of the experiment; namely, randomly assigning our random sample of ex-

perimental units to treatments and performing the experiment under identical conditions

so that no other systematic sources of variability exist. However, how do we know if the

normality and homoscedastic (i.e., constant variance) error assumptions are met in

practice? These assumptions can be checked by looking at residuals.

RESIDUALS : Of course, we never get to actually see the εij’s (i.e., the errors) because

they are unobservable random variables. However, we can observe “proxies” of the errors;

namely, the residuals. In the one-way layout, define

eij = yij − yi+

to be the residual associated with the observation yij. Recall that yi+ is the least-squares

estimate of µi = µ + τi.

REMARK : With nearly all statistical models, a residual represents the difference between

the observed and the predicted (or expected) values. Here, the observed value is Yij.

The predicted value is the least squares estimator for µi; namely, Y i+. This makes sense

intuitively for the one-way classification model; we would expect an observation to be
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“close” to the mean (expected) Y i+; however, not all will equal the mean necessarily;

these deviations in the observed and expected responses are the residuals.

A NOTE ON THE NOTATION : Make sure to recognise the difference between an error

and a residual. They are not the same.

εij = error; can not be observed

eij = residual; can be observed

Also, Rao uses Eij to denote an error term. While there are good reasons for doing this

(e.g., the use of a capital letter to emphasise the random aspect), the fact is I just don’t

like this notation! I’ll use εij instead.

DIAGNOSING NORMALITY : If we specify that εij ∼ iid N (0, σ2) and the normality

assumption holds, then the residuals (which, again, can be thought of proxies to the

errors) are also normally distributed. In fact, it is not difficult to show that when the

model holds, eij, when viewed as a random variable; i.e.,

eij = Yij − Y i+ ∼ N [
0, σ2(1− n−1

i )
]
.

Thus, if the normality assumption is true, and the model holds, a histogram of the

observed eij = yij − yi+ should look normally distributed, centered around zero.

NORMALITY PLOTS : Another way to diagnose normality is to use a normal prob-

ability plot; these are sometimes also called quantile-quantile plots (or qq plots).

This plot is easy to construct. All you do is order the N observed residuals eij = yij−yi+

from lowest to smallest, say, e(1) ≤ e(2) ≤ · · · ≤ e(N), then plot the ordered residuals

against the associated N ordered quantiles from the standard normal distribution; i.e.,

the N ordered Z values which delimit N + 1 equal areas. If the normality assumption

holds, and the model is correct, this plot should look like a straight line.

REMARK : If the underlying distribution of the data is not normal, then, in theory,

the rationale we used to develop the statistic is affected. However, in practice, ANOVA

methods, in general, are pretty robust to the normality assumption. That is, as long
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as there are no “gross departures” from normality, you can feel fairly confident in the

validity of the procedure. Of course, if there are gross departures from normality, the

hypothesis test may be flawed. That is, the true significance level of the procedure may

be much larger than α. In these instances, we might conclude that there is a treatment

difference, when there really isn’t! That is, we may think that we are seeing a difference

in means, when actually we are just seeing a serious departure from normality.

OUTLIERS : Normal probability plots can also be used to detect outliers. Also, another

check for outliers may be made by examining the studentised residuals

rij =
yij − yi+√

MS[E]
(
1− 1

ni

) .

When the model holds, rij ∼ tN−t. Thus, when N is large relative to t, a studentised

residual larger than 3 or 4 (in absolute value) is a potential outlier.

DIAGNOSING NONCONSTANT VARIANCE : If the variances across treatment groups

are not the same, then the rationale we used to develop the F statistic is lost. A violation

in this assumption can be much more serious than departures from normality. Small

departures aren’t too problematic in balanced designs. However, in unbalanced designs,

especially where the variances are very different, the overall F test may have a seriously

inflated Type I Error rate.

MULTIPLICATIVE MODELS : There are some physical situations where a more plau-

sible model is not additive, but multiplicative; that is,

Yij = µ∗τ ∗i ε∗ij.

Such a model is often appropriate for growth data, or in other situations where the

variability in response tends to get larger as the response becomes larger.

Example 2.3. Consider a one-way classification experiment with five different dose

levels of a growth hormone used in mice. The higher the level of dose, the higher the

concentration of the hormone. In Figure 2.9, we see that the variation levels are not

PAGE 49



CHAPTER 2 STAT 3601

Dose.1 Dose.2 Dose.3 Dose.4 Dose.5

20

24

28

32

W
ei

gh
ts

Figure 2.9: Weight gain data at increasing dose levels.

constant for the different doses; rather, there seems to be an increasing trend in the

variation levels! That is, the constant variance assumption appears to be violated.

RESIDUAL PLOTS : A good visual display to use for diagnosing nonconstant variance

is the plot of residuals versus predicted values. This is sometimes called a residual plot.

If the model holds, then one can show that

Cov(eij, Y i+) = 0;

i.e., the residuals and predicted values are uncorrelated. Thus, residual plots that

display nonrandom patterns suggest that there are some problems with our model as-

sumptions.

TESTS FOR EQUAL VARIANCES : There are two procedures for testing

H0 : σ2
1 = σ2

2 = · · · = σ2
t

versus

H1 : the σ2
i are not all equal.
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One procedure is Barlett’s test; however, it assumes normality and is not robust to

departures from it. Levene’s test, a nonparametric procedure, makes no distributional

assumption on the error terms, and is often preferred in practice.

2.5 Analysis of transformed data

The usual approach for dealing with nonconstant variance, when it occurs, is to apply

a variance-stabilising transformation and then run the ANOVA on the transformed

data. We now outline how such transformations are derived. Suppose that Y is a random

variable with mean E(Y ) = µ and variance V (Y ) = v(µ), some function of the mean.

Of course, as µ changes, so does V (Y ), which violates the homoscedastic assumption,

and, hence, this is the problem! So, the idea is to find a function of Y , say, g(Y ) so that

V [g(Y )] is constant. The function g is the variance-stabilising transformation.

Here are some common probability distributions where the variance V (Y ) is a function

of E(Y ).

Model Mean Variance, v(µ) Data description g(Y )

Poisson E(Y ) = µ V (Y ) = µ count data
√

Y

Exponential E(Y ) = µ V (Y ) = µ2 time to failure data log Y

Bernoulli E(Y ) = µ V (Y ) = µ(1− µ) proportion of successes sin−1(
√

Y )

FINDING THE TRANSFORMATION : Write a one-term Taylor series expansion of g(Y )

about the point µ as

g(Y ) ≈ g(µ) + g′(µ)(Y − µ).

Then, using this linear approximation, it follows that

V [g(Y )] ≈ [g′(µ)]2v(µ),

where V (Y ) = v(µ). Setting [g′(µ)]2v(µ) equal to a constant, say, c, which is free of µ,

and solving for g, we get

g(µ) =

∫
c0√
v(µ)

dµ,

PAGE 51



CHAPTER 2 STAT 3601

where c0 =
√

c (still just a constant). For example, if our response is really Poisson, then

g(µ) =

∫
c0√
µ

dµ = 2c0
√

µ + c1,

where c1 is a constant free of µ. Taking c0 = 1
2

and c1 = 0 gives g(µ) =
√

µ. Thus,

the square root transformation is the appropriate variance-stabilising transformation for

Poisson data. Rao gives two good examples (Examples 8.9 and 8.10) on pages 308-311.

BOX-COX TRANSFORMATION : The power transformation

g(Y ) =





log Y, λ = 0

Y λ, λ > 0

was suggested by Box and Cox (1964). The log and square root transformations are

special cases with λ = 0 and λ = 1/2, respectively. Approximate 100(1 − α) percent

confidence intervals for λ are available.

DISCLAIMER: It is important to remember that, when analysing data on a different

scale, the conclusions of the analysis apply to the transformed scale. Furthermore, one

should remember that transforming the data may fix one problem, but it may create

other violations of the model.

OTHER PLOTS : Plotting residuals in time order of data collection is helpful to detect

correlation between them; having “runs” of positive and negative residuals might chal-

lenge the independence assumption. For example, suppose we were sampling plants in

contiguous regions of a field. Plants in the same row, say, may be “more alike” than those

farther apart, so we might expect for observations to be correlated. In general, strong

correlation among the errors can be problematic, so it is important to prevent the prob-

lem by using a proper design. In this example, it may have been better to incorporate

“row-effects” into the analysis by using rows as blocks beforehand.

NONPARAMETRIC METHODS : As an alternative to model-based inference proce-

dures, nonparametric methods can be useful. In general, such methods require little

or no distributional assumptions on the error terms. The nonparametric analogue of the

one-way ANOVA F test is the Kruskal-Wallis test (see § 8.8 if you are interested).
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3 Comparing Treatment Means and Multiple Com-

parisons in the One-Way Layout

Complimentary reading from Rao: Chapter 9 (§ 9.1-9.6).

3.1 Introduction

You will recall that, in the last chapter, we developed an overall procedure (i.e., an

overall F test) for testing

H0 : µ1 = µ2 = · · · = µt

versus

H1 : the µi are not all equal

in the one-way classification model with complete randomisation. We saw that large

values of the F statistic led to the rejection of H0.

REMARK : In the overall test, rejecting H0 simply tells us that there is a difference

somewhere among the t means; it does not say where the difference is. Because of this,

the overall F test is largely uninformative. In fact, if H0 is rejected, have we really

learned anything new? Put another way, does anyone think that all t means are ever

going to be identical? Because of this, some experimenters choose to skip the overall test

altogether and restrict attention only to specific comparisons among the means under

consideration. Such comparisons generally fall into one of three categories:

1. pre-planned comparisons; i.e., those comparisons planned before the experiment,

2. unplanned comparisons; those comparisons specified after the experiment has

been conducted, and

3. all possible pairwise comparisons.
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Example 3.1. In the pea experiment from Example 2.2, suppose that the researcher

wanted to investigate these particular issues: (a) whether or not the fructose and glucose

only treatments (2 and 4) were different, (b) whether or not the treatments involving

fructose and/or glucose (2, 3, and 4) were different than with the sucrose treatment (5),

(c) whether or not the sugar treatments (2, 3, 4, and 5) differed from the control (1),

and (d) whether or not the fructose and glucose only treatments (2 and 4) are different

from the glucose/fructose combination treatment (3). If the investigator had decided to

make these comparisons before the experiment was conducted (i.e., before the data were

collected), then this would fall into the category of pre-planned comparisons. If it

was decided to make any or all of these comparisons after the data were observed, these

would be unplanned comparisons.

3.2 Pre-planned comparisons using contrasts

We consider those comparisons which have been specified before the experiment has been

conducted. Comparing two or more treatments in this way may be done using contrasts.

Contrasts are widely-used with ANOVA models because they can be used to explain the

differences in treatment means. In fact, it is often the case that specific research questions

can be addressed by examining the “right” contrasts.

TERMINOLOGY : Let µ1, µ2, ..., µt denote the population means in a one-way classifica-

tion model, and suppose that c1, c2, ..., ct are known constants. The linear combination

θ =
t∑

i=1

ciµi = c1µ1 + c2µ2 + · · ·+ ctµt,

with the restriction that
∑t

i=1 ci = 0, is called a contrast. In the one-way layout model,

all contrasts are estimable. Since Y i+ is the least-squares estimator of µi, i = 1, 2, ..., t,

it follows that

θ̂ =
t∑

i=1

ciY i+ = c1Y 1+ + c2Y 2+ + · · ·+ ctY t+

is the least-squares estimator of θ. The least-squares estimator θ̂ is called a contrast of

sample means.
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Example 3.1 (continued). Each of the preplanned comparisons in Example 3.1 is now

considered. To investigate

• whether or not the fructose and glucose only treatments (2 and 4) were different,

we may specify

θ1 = µ2 − µ4.

Note that this is a contrast with c2 = 1, c4 = −1, and c1 = c3 = c5 = 0.

• whether or not the treatments involving fructose and/or glucose (2, 3, and 4) were

different than with the sucrose treatment (5), we may specify

θ2 =
1

3
(µ2 + µ3 + µ4)− µ5.

Note that this is a contrast with c1 = 0, c2 = c3 = c4 = 1
3
, and c5 = −1.

• whether or not the sugar treatments (2, 3, 4, and 5) differed from the control (1),

we may specify

θ3 = µ1 − 1

4
(µ2 + µ3 + µ4 + µ5).

Note that this is a contrast with c1 = 1 and c2 = c3 = c4 = c5 = −1
4
.

• whether or not the fructose and glucose only treatments (2 and 4) are different

from the glucose/fructose combination treatment (3), we may specify

θ4 =
1

2
(µ2 + µ4)− µ3

Note that this is a contrast with c2 = c4 = 1
2
, c3 = −1, and c1 = c5 = 0.

SAMPLING DISTRIBUTION OF θ̂: First, recall that under our usual one-way model

assumptions, Y i+ ∼ N (µi, σ
2/ni). Thus, θ̂, too, is normally distributed since it is just a

linear combination of the (sample) treatment means Y 1+, Y 2+, ..., Y t+. The mean of θ̂ is

given by

E(θ̂) = E

( t∑
i=1

ciY i+

)
=

t∑
i=1

ciE(Y i+) =
t∑

i=1

ciµi = θ,
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and the variance of θ̂ is

V (θ̂) = V

( t∑
i=1

ciY i+

)
=

t∑
i=1

c2
i V (Y i+) = σ2

t∑
i=1

c2
i

ni

.

Thus, the quantity

θ̂ ∼ N
(

θ, σ2

t∑
i=1

c2
i

ni

)
.

CONFIDENCE INTERVALS AND HYPOTHESIS TESTS : Standardising θ̂, we get

Z =
θ̂ − θ√

σ2
( ∑t

i=1
c2i
ni

) ∼ N (0, 1),

and

t =
θ̂ − θ√

MS[E]
( ∑t

i=1
c2i
ni

) =

bθ−θr
σ2

(Pt
i=1

c2
i

ni

)
√

SS[E]
σ2 /(N − t)

∼ tN−t.

Therefore, using t as a pivot, a 100(1− α) percent confidence interval for θ is given by

θ̂ ± tN−t,α/2

√√√√MS[E]

( t∑
i=1

c2
i

ni

)

︸ ︷︷ ︸bσbθ, standard error of bθ
.

In addition, the hypothesis test with H0 : θ = θ0 (usually, θ0 = 0) can be performed by

using

t =
θ̂ − θ0√

MS[E]
( ∑t

i=1
c2i
ni

)

as a test statistic with an appropriate rejection region from the tN−t reference distribution.

Example 3.2 (continuation of Example 3.1). Before the experiment was conducted, it

was decided to compare the fructose and glucose only treatments. To be specific, the

researcher decided to test H0 : θ1 = 0 versus H1 : θ1 6= 0, where the contrast θ1 = µ2−µ4.

Its least-squares estimator is θ̂1 = Y 2+ − Y 4+. The t statistic is given by

t =
θ̂1 − θ0√

MS[E]
( ∑t

i=1
c2i
ni

) =
(58.2− 59.3)− 0√
5.46

[
12

10
+ (−1)2

10

] = −1.05,
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which has a two-sided probability value of P ≈ 0.298. There does not appear to be a

significant difference between the fructose and glucose treatments with respect to their

affect on growth. With t45,0.025 ≈ 2.0141, a 95 percent confidence interval for θ is given

by

(58.2− 59.3)± 2.0141

√
5.46

[
12

10
+

(−1)2

10

]
, or (−3.20, 1.00).

SUMS OF SQUARES FOR CONTRASTS : Suppose that θ is a contrast. We have learned

that testing H0 : θ = 0 versus H1 : θ 6= 0 can be performed using a two-sided t test (see

Example 3.2). However, recall the relationship between the t and F distributions; namely,

that t2ν = F1,ν . Thus, a two-sided t test and a one-sided F test are equivalent testing

procedures. In this light, we can test H0 versus H1 by

• rejecting H0, at level α, when

|t| =

∣∣∣∣∣∣∣∣

θ̂√
MS[E]

( ∑t
i=1

c2i
ni

)

∣∣∣∣∣∣∣∣
≥ tN−t,α/2 ⇐⇒ |θ̂| ≥ tN−t,α/2

√√√√MS[E]

(
t∑

i=1

c2
i

ni

)

︸ ︷︷ ︸
Fisher CCV

• or, equivalently, rejecting H0, at level α, when

F = t2 =
θ̂2

MS[E]
( ∑t

i=1
c2i
ni

) ≥ F1,N−t,α.

TERMINOLOGY : We define the sum of squares for θ̂ as

SS(θ̂) =
θ̂2

∑t
i=1

c2i
ni

.

It is not difficult to argue that when H0 : θ = 0 is true, SS(θ̂)/σ2 ∼ χ2
1 (verify!). Also,

since SS(θ̂) has only one degree of freedom associated with it, MS(θ̂) = SS(θ̂). Thus,

F =
MS(θ̂)

MS[E]
=

SS(θ̂)/σ2

SS[E]
σ2 /(N − t)

∼ F1,N−t,

since SS[E]/σ2 ∼ χ2
N−t and SS(θ̂) and SS[E] are independent statistics. Note that this

quantity can be interpreted as a ratio of two mean squares; one for θ̂ and one for error.
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Theorem. Multiplying the coefficients of any contrast θ̂ by a constant does not change

the value of SS(θ̂). That is, SS(θ̂) = SS(aθ̂), for any nonzero constant a.

Example 3.3 (continuation of Example 3.2). To illustrate the F test for a single degree

of freedom contrast (any contrast has one degree of freedom associated with it), we will

revisit Example 3.2 and test H0 : θ1 = 0 versus H1 : θ1 6= 0 where, recall, θ1 = µ2 − µ4 is

a contrast. For the pea data, we have θ̂2
1 = (y2+ − y4+)2 = (58.2 − 59.3)2 = 1.21; thus,

SS(θ̂1) is given by

SS(θ̂1) =
θ̂2

∑t
i=1

c2i
ni

=
1.21

1
10

[12 + (−1)2]
= 6.05.

Finally,

F =
MS(θ̂1)

MS[E]
=

6.05

5.46
= 1.11,

which is (up to rounding error) the square of t = −1.05 in Example 3.2. What is the P

value?

ORTHOGONALITY : Two contrasts of sample means

θ̂1 =
t∑

i=1

ciY i+ = c1Y 1+ + c2Y 2+ + · · ·+ ctY t+

and

θ̂2 =
t∑

i=1

diY i+ = d1Y 1+ + d2Y 2+ + · · ·+ dtY t+

are said to be orthogonal if
t∑

i=1

cidi

ni

= 0.

When ni = n for all i; i.e., the design is balanced, then the last equation reduces to

c′d =
t∑

i=1

cidi = 0,

where c = (c1, c2, ..., ct)
′ and d = (d1, d2, ..., dt)

′. A set of contrasts, say, θ̂1, θ̂2, ..., θ̂k,

k < t, is said to be a mutually orthogonal set if θ̂j and θ̂j′ are orthogonal for all

j 6= j′.

REMARK : Contrasts are only of practical interest when they define interesting functions

of the µi’s. Orthogonal contrasts are most useful in balanced problems because a set
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of orthogonal contrasts can retain interesting interpretations (like in Example 3.1). In

unbalanced designs, orthogonality depends on the unequal ni’s, so there is rarely more

than one interpretable contrast in a set of orthogonal contrasts.

Example 3.4. In Example 3.1, we defined a set of four contrasts {θ1, θ2, θ3, θ4}. Table 3.6

displays the contrast coefficients. It follows that {θ1, θ2, θ3, θ4} is a mutually orthogonal

set of contrasts since
5∑

i=1

cijcij′ = 0,

for all j 6= j′; j, j′ = 1, 2, 3, 4.

Table 3.6: Table of contrast coefficients for Example 3.1.

θj c1j c2j c3j c4j c5j

θ1 0 1 0 −1 0

θ2 0 1
3

1
3

1
3

−1

θ3 1 −1
4

−1
4

−1
4

−1
4

θ4 0 1
2

−1 1
2

0

Theorem. The sums of squares for treatments is always greater or equal to the sums of

squares for any contrast; that is, for any contrast, θ̂, SS[T] ≥ SS(θ̂).

Proof. Assume that ni = n for all i (i.e., a balanced design) and let θ̂ =
∑t

i=1 ciY i+ be

any contrast. For any vectors u,v ∈ Rt, recall that |u′v| ≤ ||u||||v||, where ||u|| = √
u′u

denotes the norm of u (this is just the Cauchy-Schwartz Inequality). Define

u = (c1, c2, ..., ct)
′ and v = (Y 1+ − Y ++, Y 2+ − Y ++, ..., Y t+ − Y ++)′

and note that

SS(θ̂) =
θ̂2

∑t
i=1

c2i
n

=
n(u′v)2

u′u
≤ nu′uv′v

u′u
= nv′v = n

t∑
i=1

(Y i+ − Y ++)2 = SS[T],

since θ̂ =
∑t

i=1 ciY i+ =
∑t

i=1 ci(Y i+ − Y ++). Since θ̂ is arbitrary, the result holds for

balanced designs. In unbalanced designs, the result is still true, but is more difficult to

prove. ¤
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Theorem. There is always one contrast that accounts for all of SS[T]; that is, there

exists a contrast, say, θ̂∗ such that SS[T] = SS(θ̂∗).

REMARK : That there exists such a contrast that accounts for all the of sums of squares

for treatments is theoretically interesting and useful (it establishes that Scheffe’s method

is legitimate, as we’ll see later). From a practical standpoint, however, this magic contrast

is usually not interpretable.

Theorem. Let {θ̂1, θ̂2, ..., θ̂t−1} be a set of t − 1 mutually orthogonal contrasts in

the one-way layout. Then,

SS[T] = SS(θ̂1) + SS(θ̂2) + · · ·+ SS(θ̂t−1).

That is, the sums of squares for treatments can be broken into components corresponding

to sums of squares for individual orthogonal contrasts.

Example 3.5 (continuation of Example 3.4) (pea-mc.sas). Consider the set of mutu-

ally orthogonal contrasts {θ1, θ2, θ3, θ4}. In Example 3.3, we computed SS(θ̂1) = 6.05.

Analogous calculations show (verify yourself!) that SS(θ̂2) = 235.20, SS(θ̂3) = 832.32,

and SS(θ̂4) = 3.75. Since the contrasts are all orthogonal, it follows that

SS(θ̂1) + SS(θ̂2) + SS(θ̂3) + SS(θ̂4) = 6.05 + 235.20 + 832.32 + 3.75 = 1077.32 = SS[T].

Furthermore, the F statistics associated with each contrast,

Fj =
SS(θ̂j)

MS[E]
=

MS(θ̂j)

MS[E]
,

along with right-tail P values are provided in Table 3.7. It looks as though most of the

observed variability in the treatment means is due to the second and third contrasts.

However, we should make a special note of the following fact: the conclusions that we

draw from Table 3.7 have not been adjusted for multiplicity in any way. That is, we

have not accounted for the fact that we are making multiple statements here about the

variability among the treatment means (in the form of these contrasts). The upshot of

this result is that we do not know what our (overall) Type I Error rate is for the family

of tests H0 : θj = 0 versus H1 : θj 6= 0; j = 1, 2, 3, 4. We could make a conclusion about
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Table 3.7: F statistics for Example 3.5.

θj θ̂j SS(θ̂j) Fj P Decision

θ1 −1.10 6.05 1.11 0.298 Not significant

θ2 −5.60 235.20 43.11 <0.0001 Significant

θ3 10.20 832.32 152.56 <0.0001 Significant

θ4 0.75 3.75 0.69 0.411 Not significant

a single contrast (of course, provided that it was a preplanned comparison); however,

we can not make any joint statements about two or more the contrasts in this problem,

and have our overall error rate be controlled appropriately. Methods for adjusting for

multiplicity will be handled later.

3.3 Testing single contrasts suggested by the data

When contrasts are preplanned, we can use the Fisher critical contrast value (CCV) to

test H0 : θ = 0 versus H0 : θ 6= 0 as mentioned earlier. Such a test declares θ̂ significant

when

|t| =

∣∣∣∣∣∣∣∣

θ̂√
MS[E]

( ∑t
i=1

c2i
ni

)

∣∣∣∣∣∣∣∣
≥ tN−t,α/2 ⇐⇒ |θ̂| ≥ tN−t,α/2

√√√√MS[E]

(
t∑

i=1

c2
i

ni

)

︸ ︷︷ ︸
Fisher CCV

If the decision to test the significance of θ̂ without regard to the observed outcome of the

experiment, then this test guarantees that the probability of falsely declaring significance

is α. A 100(1 − α) percent confidence interval for θ, based on the Fisher’s method of

testing preplanned contrasts, as derived earlier, is given by

θ̂ ± tN−t,α/2

√√√√MS[E]

(
t∑

i=1

c2
i

ni

)
.

However, if the decision is made to test H0 : θ = 0 versus H0 : θ 6= 0 after seeing the

data, these methods are no longer appropriate!
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THE PROBLEM WITH “DATA-SNOOPING”: Suppose we decide to examine the sam-

ple means Y 1+, Y 2+, ..., Y t+ and compare only those that appear to be different. That

is, we are making those comparisons “suggested” by the data. To see why this is not a

valid method of analysis, suppose we decide to conduct a t test at level α = 0.05 for a

difference in the two treatments observed to have the highest and lowest sample means

among all t treatments. Since the data are just random samples from the treatment

populations of interest, the sample means Y i+ could have ended up the way they did

because

• there really is a difference in the population means, or

• we have “unusual” samples, and there is not a difference in the population means.

Of course, since chance is involved, either of these explanations is possible. It turns out

that we will still be more likely to reject the null hypothesis of no difference in the two

extreme means, even if they are the really the same! Put another way, it is not legitimate

to “find the best and worst treatments, compare them, and say that your error rate is

five percent.” In fact, with α = 0.05, it turns out that the true error rate in this instance

(comparing the best treatment to the worst treatment after the experiment has been

performed) is actually about 0.13 if t = 3, about 0.60 if t = 10, and about 0.90 if t = 20!

THE SCHEFFE METHOD OF TESTING SUGGESTED CONTRASTS : When a con-

trast is suggested by the data, we can use the Scheffe critical contrast value (CCV) to

test H0 : θ = 0 versus H0 : θ 6= 0. Such a test declares θ̂ significant when

|θ̂| ≥
√

(t− 1)Ft−1,N−t,α × σ̂bθ︸ ︷︷ ︸
Scheffe CCV

,

where

σ̂bθ =

√√√√MS[E]

(
t∑

i=1

c2
i

ni

)
.

Scheff’s procedure allows us to estimate all possible contrasts simultaneously at level α.

Since we are only doing one, the method is always conservative; i.e., the error rate may
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be much less than the nominal α level. Thus, if the contrast is truly significant, Scheffe’s

method may have a hard time detecting it. This is the price to pay for controlling the

error rate; however, on the flip side, you can be extra confident that, in fact, you are not

making a Type I Error!

SCHEFFE CONFIDENCE INTERVALS : A 100(1 − α) percent confidence interval for

θ, based on the Scheffe method of testing suggested contrasts is given by

θ̂ ±
√

(t− 1)Ft−1,N−t,α × σ̂bθ.
Example 3.6 (pea-mc.sas). Suppose that after seeing the pea-data, our researcher

decides to test whether or not the fructose-only and sucrose treatments are statistically

different, using α = 0.05. Since this comparison was not preplanned, he must use Scheffe’s

method of testing contrasts. This comparison is done by using the contrast θ = µ2 − µ5.

We have θ̂ = y2+ − y5+ = 58.2− 64.1 = −5.9. Note that

σ̂bθ =

√√√√MS[E]

(
t∑

i=1

c2
i

ni

)
=

√
5.46

[
12

10
+

(−1)2

10

]
= 1.045.

With F4,45,0.05 = 2.5787, Scheffe’s CCV is given by

√
(t− 1)Ft−1,N−t,α × σ̂bθ =

√
(5− 1)F4,45,0.05 × 1.045 = 3.355.

Since |θ̂| = 5.9 > 3.355, we would reject H0 : θ = 0 at the α = 0.05 level; that is,

there is a statistical difference between the expected growth for pea stems receiving the

fructose-only and sucrose treatments.

REMARK : It is interesting to note that in Example 3.6, had the comparison of the

fructose-only and sucrose means been preplanned, the Fisher CCV could have been

used; this value is given by

t45,0.025 × σ̂bθ = 2.0141× 1.045 = 2.104,

which is much smaller than Scheffe’s CCV. Indeed, this should make sense intuitively. If

comparisons are to be made after seeing the data, we should have overwhelming evidence

to reject H0−much more than had we decided to make the comparison beforehand.
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3.4 Multiple comparisons of means in the one-way layout

Whenever we construct a confidence interval or perform a hypothesis test, there is a built-

in chance for error. The unfortunate reality is that the more inferences we perform, the

more likely we are to commit an error. The purpose of multiple comparison methods

is to control the probability of making a certain type of error.

THE COMPARISONWISE ERROR RATE : Suppose that we have a set of contrasts in

mind, say, θ1, θ2, ..., θk, and that we would like to test H0 : θj = 0 versus H1 : θj 6= 0

for j = 1, 2, ..., k. In a multiple-comparisons procedure, the expected proportion of

contrasts that will be declared as significant when there really are no differences (i.e., all

the H0’s are true) is called the comparisonwise error rate; i.e.,

Comparisonwise error rate (H0 true) =
number of erroneous inferences

number of inferences made
.

A multiple comparisons procedure in which each preplanned contrast is tested at level

α will have a comparisonwise error rate of α. This is true because if the probability of a

Type I Error is α for each contrast, the proportion of Type I Errors committed (in the

set) is also α. Thus, the Fisher multiple comparison method controls the comparisonwise

error rate for a set of k contrasts.

FISHER’S MULTIPLE COMPARISON METHOD : Let θ̂1, θ̂2, ..., θ̂k denote a set of

k contrasts in a one-way layout. The multiple comparison procedure that declares θ̂j

significant if

|θ̂j| ≥ tN−t,α/2 × σ̂bθj︸ ︷︷ ︸
Fisher CCV

,

where

σ̂bθj
=

√√√√MS[E]

(
t∑

i=1

c2
i

ni

)
,

has a comparisonwise error rate α. This only applies when the contrasts are pre-

planned. Confidence intervals for θj are given by θ̂j ± tN−t,α/2 × σ̂bθj
, for j = 1, 2, ..., k.

Example 3.7. We now compute the Fisher CCVs for the four contrasts in Example

3.1 using α = 0.05. Recall that tN−t,α/2 = t45,0.025 = 2.0141. For our four contrasts,
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Table 3.8: Fisher multiple comparisons for the pea growth data.

θj θ̂j σ̂bθj
t45,0.025 Fisher’s CCV Decision

θ1 −1.10 1.045 2.0141 2.015 Not significant

θ2 −5.60 0.853 2.0141 1.718 Significant

θ3 10.20 0.826 2.0141 1.664 Significant

θ4 0.75 0.905 2.0141 1.822 Not significant

σ̂bθ1
≈ 1.045, σ̂bθ2

≈ 0.853, σ̂bθ3
≈ 0.826, and σ̂bθ4

≈ 0.905 (verify!). Values of least-squares

estimates, standard errors, and Fisher’s CCVs are given in Table 3.8. Provided that

these were preplanned comparisons, we could conclude that the contrasts θ̂2 and θ̂3 are

significantly different from zero at the α = 0.05 comparisonwise error rate.

DRAWBACK WITH COMPARISONWISE CONTROL: The comparisonwise error rate

is rarely quoted in practice because of the following reason: the expected number of false

significances (i.e., rejecting H0 when H0 is true) depends on k, the number of contrasts

tested, and increases as k does.

THE EXPERIMENTWISE ERROR RATE : In practice, one usually prefers to control a

different error rate; namely, one that expresses the probability of making an error in any

of the tests (when all of the H0’s are true). Limiting this probability is referred to as

control of the experimentwise error rate. The experimentwise error rate of a multiple

comparisons procedure is a natural generalisation of the Type I Error rate associated

with the significance level of a single contrast; i.e.,

Experimentwise error rate (H0 true) =
# of experiments with ≥ 1 erroneous inference

# of experiments conducted
.

A multiple comparisons procedure is said to have an experimentwise error rate α if the

probability of declaring at least one false significance when testing k contrasts that are

not truly significant (i.e., all the H0’s are true) is α.

IMPORTANT : Fisher’s method does not control the experimentwise error rate!!
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THE SCHEFFE MULTIPLE COMPARISON METHOD : Let θ̂1, θ̂2, ..., θ̂k denote a set

of k contrasts in a one-way layout. The multiple comparison procedure that declares θ̂j

significant if

|θ̂j| ≥
√

(t− 1)Ft−1,N−t,α × σ̂bθj︸ ︷︷ ︸
Scheffe CCV

,

where

σ̂bθj
=

√√√√MS[E]

(
t∑

i=1

c2
i

ni

)
,

has an experimentwise error rate α. Simultaneous 100(1 − α) percent confidence

intervals for θj are given by θ̂j ±
√

(t− 1)Ft−1,N−t,α × σ̂bθj
, for j = 1, 2, ..., k.

REMARK : Scheffe’s method is primarily used with contrasts that are “suggested” by

the data and is valid for examining any and all contrasts simultaneously. Scheffe’s test

cannot possibly be rejected unless the overall F test is rejected (verify!). This confers

the control of the experimentwise error rate for multiple tests.

Example 3.8. We now compute the Scheffe CCVs for the four contrasts in Example

3.1 using α = 0.05. Recall that F4,45,0.05 = 2.5787, and hence,
√

(5− 1)F4,45,0.05 = 3.212.

Values of least-squares estimates, standard errors, and Scheffe’s CCVs are given in Table

3.9. The least-squares estimates and standard errors are the same as in Table 3.8 (the

only thing that changes are the critical values!). Regardless of whether or not these were

preplanned or unplanned comparisons, we could conclude that the contrasts θ̂2 and θ̂3

are significantly different from zero at the α = 0.05 experimentwise error rate.

Table 3.9: Scheffe multiple comparisons for the pea growth data.

θj θ̂j σ̂bθj

√
(5− 1)F4,45,0.05 Scheffe’s CCV Decision

θ1 −1.10 1.045 3.212 3.357 Not significant

θ2 −5.60 0.853 3.212 2.740 Significant

θ3 10.20 0.826 3.212 2.653 Significant

θ4 0.75 0.905 3.212 2.907 Not significant
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THE BONFERRONI MULTIPLE COMPARISON METHOD : Let θ̂1, θ̂2, ..., θ̂k denote a

set of k contrasts in a one-way layout. The multiple comparison procedure that declares

θ̂j significant if

|θ̂j| ≥ tN−t,α/2k × σ̂bθj︸ ︷︷ ︸
Bonferroni CCV

,

where

σ̂bθj
=

√√√√MS[E]

(
t∑

i=1

c2
i

ni

)
,

has an experimentwise error rate α. Simultaneous 100(1 − α) percent confidence

intervals for θj are given by θ̂j ± tN−t,α/2k × σ̂bθj
, for j = 1, 2, ..., k.

REMARK : Bonferroni’s method controls the experimentwise error rate by employing a

simple adjustment to the significance level of each individual test. Loosely speaking, if

you have planned to do k tests, you just perform each at the α/k level rather than the

α level. This method is not appropriate for unplanned comparisons!

THEORETICAL JUSTIFICATION : The theory for this method rests on the Bonferroni

Inequality from set theory. For any sets A1, A2, ..., Ak,

P

(
k⋃

j=1

Aj

)
≤

k∑
j=1

P (Aj);

i.e., probability measures are finitely subadditive. If all hypotheses H0 : θj = 0 are true,

then the experimentwise error rate is

P
(
|θ̂j| ≥ tN−t,α/2k × σ̂bθj

for some j
)

= P

(
k⋃

j=1

{
|θ̂j| ≥ tN−t,α/2k × σ̂bθj

})

≤
k∑

j=1

P
({
|θ̂j| ≥ tN−t,α/2k × σ̂bθj

})

=
k∑

j=1

α

k
= α.

Thus, by using Bonferroni’s approach, the experimentwise error rate is controlled at α.

Example 3.9. We now compute the Bonferroni CCVs for the four contrasts in Example

3.1 using α = 0.05. From SAS, I computed tN−t,α/2k = t45,0.00625 = 2.6021. Values
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Table 3.10: Bonferroni multiple comparisons for the pea growth data.

θj θ̂j σ̂bθj
t45,0.00625 Bonferroni’s CCV Decision

θ1 −1.10 1.045 2.6021 2.719 Not significant

θ2 −5.60 0.853 2.6021 2.220 Significant

θ3 10.20 0.826 2.6021 2.149 Significant

θ4 0.75 0.905 2.6021 2.355 Not significant

of least-squares estimates, standard errors, and Bonferroni’s CCVs are given in Table

3.10. Provided that these were preplanned comparisons, we could conclude that the

contrasts θ̂2 and θ̂3 are significantly different from zero at the α = 0.05 experimentwise

error rate.

SUMMARY OF THE PROCEDURES : The most general procedures for making simul-

taneous inferences are Fisher’s, Bonferroni, and Scheffe. These are listed in order from

least conservative (most likely to reject an individual H0) to most conservative (least

likely to reject). Scheffe’s method can be used for “data-snooping” purposes; that is,

to make comparisons after the data have been observed. To decide on a method, you

need to decide on how conservative you want to be. If it is very important not to claim

differences when there are none, you should be very conservative. If it is most important

to identify differences that may exist, you should choose less conservative methods.

3.5 Multiple pairwise comparisons of means

Pairwise comparisons are useful when the investigator has no preplanned comparisons

specified and simply wants to examine the statistical (and practical) differences among

the means. For a set of t means under consideration, there are
(

t
2

)
= t(t− 1)/2 possible

pairwise tests (confidence intervals). The term “pairwise” means that we are looking at

pairs of means; i.e., θij = µi − µj for i 6= j. Clearly, θij is a contrast with ci = 1 and

cj = −1 (with all other contrast coefficients equal to zero) with least squares estimator
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θ̂ij = Y i+−Y j+. Rao calls such pairwise contrasts simple contrasts. It is easy to show

(verify!) that the (estimated) standard error of any simple contrast is given by

σ̂bθij
=

√
MS[E]

(
1

ni

+
1

nj

)
.

Thus, all of our previous results from the last section apply to the case of simple contrasts.

FISHER’S MULTIPLE PAIRWISE COMPARISON METHOD : In testing simple con-

trasts H0 : θij = µi − µj = 0 versus H1 : θij = µi − µj 6= 0, the Fisher multiple pairwise

comparison method rejects H0 when

|θ̂ij| ≥ tN−t,α/2 ×
√

MS[E]

(
1

ni

+
1

nj

)

︸ ︷︷ ︸
LSDij(F)

.

This procedure has a comparisonwise error rate α. Confidence intervals for θij are

given by θ̂ij ± tN−t,α/2 × σ̂bθij
, for i 6= j. LSD stands for least significant difference.

SCHEFFE’S MULTIPLE PAIRWISE COMPARISON METHOD : In testing simple con-

trasts H0 : θij = µi − µj = 0 versus H1 : θij = µi − µj 6= 0, the Scheffe multiple pairwise

comparison method rejects H0 when

|θ̂ij| ≥
√

(t− 1)Ft−1,N−t,α ×
√

MS[E]

(
1

ni

+
1

nj

)

︸ ︷︷ ︸
LSDij(S)

.

This procedure has a experimentwise error rate α. Simultaneous 100(1−α) percent

confidence intervals for θij are given by θ̂ij ±
√

(t− 1)Ft−1,N−t,α × σ̂bθij
, for i 6= j.

BONFERRONI’S MULTIPLE PAIRWISE COMPARISON METHOD : In testing simple

contrasts H0 : θij = µi − µj = 0 versus H1 : θij = µi − µj 6= 0, the Bonferroni multiple

pairwise comparison method rejects H0 when

|θ̂ij| ≥ tN−t,α/2k ×
√

MS[E]

(
1

ni

+
1

nj

)

︸ ︷︷ ︸
LSDij(B)

.

This procedure has a experimentwise error rate α. Simultaneous 100(1−α) percent

confidence intervals for θij are given by θ̂ij ± tN−t,α/2k × σ̂bθij
, for i 6= j.
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STUDENTISED RANGE STATISTIC : In balanced designs, when H0 is true; i.e., µi = µ,

for each i, we know that, under our one-way model assumptions, the Y i+’s form a random

sample of size t from a N (µ, σ2/n) distribution. Looking at the range of this “sample”

and dividing by the natural independent χ2 estimate of the standard deviation leads to

the statistic

q =
maxi Y i+ −mini Y i+√

MS[E]/n
.

This is called the studentised range statistic. Furthermore, it is possible to find the

distribution q; it has two degree of freedom parameters and is tabled in Table C.11 (Rao)

for α = 0.01 and α = 0.05. Note that |Y i+ − Y j+| never exceeds maxi Y i+ − mini Y i+.

This simple fact establishes experimentwise control with Tukey’s method.

TUKEY’S MULTIPLE PAIRWISE COMPARISON METHOD : In testing simple con-

trasts H0 : θij = µi − µj = 0 versus H1 : θij = µi − µj 6= 0, the Tukey multiple pairwise

comparison method rejects H0 when

|θ̂ij| ≥ qt,N−t,α ×
√

MS[E]

n︸ ︷︷ ︸
LSDij(T)

.

This procedure has a experimentwise error rate α and is only appropriate for balanced

designs; i.e., ni = n for all i. Simultaneous 100(1−α) percent confidence intervals for

θij are given by

θ̂ij ± qt,N−t,α ×
√

MS[E]

n
,

for i 6= j. The Tukey-Kramer procedure is an extension of Tukey’s procedure to

unbalanced designs (it is conservative); H0 : θij = µi − µj = 0 is rejected when

|θ̂ij| ≥ qt,N−t,α ×
√

MS[E]

(
1

ni

+
1

nj

)

︸ ︷︷ ︸
LSDij(TK)

.

Confidence intervals are formed analogously. The Tukey and Tukey-Kramer procedures

are explicitly designed for pairwise comparisons; they can not be used when dealing

with contrasts that are not simple.

NOTE : We will avoid the Student-Newman-Keuls and Duncan methods (p. 356, Rao).
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Example 3.10 (pea-mc.sas). We now illustrate the four pairwise comparisons methods

(Fisher, Scheffe, Bonferroni, and Tukey) with the pea section data from Example 2.2 using

α = 0.05. Recall that there are t = 5 treatments, which gives us
(
5
2

)
= 10 pairwise tests

(or confidence intervals). Recall that F4,45,0.05 = 2.5787. We have

LSDij(F) = t45,0.025︸ ︷︷ ︸
2.0141

×
√

5.46

(
1

10
+

1

10

)
= 2.104

LSDij(S) =
√

(5− 1)F4,45,0.025 ×
√

5.46

(
1

10
+

1

10

)
= 3.355

LSDij(B) = t45,0.0.0025︸ ︷︷ ︸
2.9521

×
√

5.46

(
1

10
+

1

10

)
= 3.084

LSDij(T) = q5,45,0.05︸ ︷︷ ︸
≈ 4.02

×
√

5.46

10
= 2.970.

Table 3.11: All pairwise comparisons for the pea growth data.

θ̂ij Comparison Methods rejecting H0

θ12 11.9 C vs. F FSBT

θ13 12.1 C vs. GF FSBT

θ14 10.8 C vs. G FSBT

θ15 6.0 C vs. S FSBT

θ23 0.2 F vs. GF none

θ24 −1.1 F vs. G none

θ25 −5.9 F vs. S FSBT

θ34 −1.3 FG vs. G none

θ35 −6.1 FG vs. S FSBT

θ45 −4.8 G vs. S FSBT

ANALYSIS : For the pea-section data, we see from Table 3.11 that all four pairwise

procedures yield the same conclusions for each of the 10 simple contrasts! Of course,
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this need not always be the case. Also, recall that Fisher’s method doesn’t control the

experimentwise error rate (whereas the other three methods do).

REMARK : With the pea data, note that for those methods that control the experimen-

twise error rate,

LSDij(T) < LSDij(B) < LSDij(S).

This is usually how the ordering goes when comparing these three procedures. Tukey’s

procedure is exact; i.e., the experimentwise error rate is controlled at α. The other

two procedures, Bonferroni and Scheffe, are conservative; i.e., the experimentwise error

rate for the set of comparisons is smaller than α. Thus, if all pairwise comparisons are

of interest, Tukey’s method is preferred over the Bonferroni and Scheffe methods (in

cases of equal replication) since we are more likely to reject the relevant hypotheses. In

unbalanced designs, because the Scheffe method considers all possible contrasts in its

formulation, not just ones involving pairs, the Bonferroni method may be preferred if the

number of contrasts is small. In this case, it is likely that LSDij(B) < LSDij(S).

REMARK : It is legitimate to conduct hypothesis tests using all of these methods (where

applicable) and then choose the one that rejects most often. This is valid because the

“cutoff” values LSDij(T), LSDij(TK), LSDij(B), and LSDij(S) do not depend on the data.

SOME MULTIPLE COMPARISON CAVEATS : Because the number of comparisons in

a multiple-comparisons setting may be large and of our desire to control the experimen-

twise error rate, we are likely to have low power (that is, we may have a difficult time

detecting real differences among the comparisons in our set). This is true because we

must use critical values (for each comparison) larger than we would if the comparisons

were made separately at level α. This problem has tempted some investigators to try to

figure out ways “around the issue;” for example, claiming that certain comparisons were

of interest in advance when they really were not, so as to salvage “significant” results.

This is, of course, not appropriate! The only way to ensure enough power to test all

questions of interest is to design the experiment with a large enough sample size. These

issues are explored in Section 9.8 (Rao).
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4 Simple Linear Regression and Correlation

Complimentary reading from Rao: Chapter 10 (§ 10.1-10.8).

4.1 Introduction

We have largely focused our attention on problems where the main issue is to identify

differences among treatment means in a one-way layout. Determining differences among

means can be achieved through the ANOVA and the use of contrasts. Another problem

that often arises in economics, industrial applications, and biological settings is that of

investigating the mathematical relationship between two (or more) variables. Depending

on the nature of the variables, and the observations on them, the methods of regression

analysis or correlation analysis are appropriate. Our development of the methods

for identifying differences among treatment means, those of analysis of variance, are, in

fact, very similar to regression analysis methods. Both sets of methods are predicated on

representing the data by a linear model which includes components representing both

systematic and random sources of variation.

Example 4.1. Many fishes have a lateral line system enabling them to experience

mechanoreception (the ability to sense physical contact on the surface of the skin or

movement of the surrounding environment, such as sound waves in air or water). The

frequency (number per second) of electrical impulses (EI) emitted from one particular

fish was measured at several temperatures (measured in Celcius).

Temperature (X): 20 22 23 25 27 28 30

Frequency (Y ): 224 252 267 287 301 306 318

Figure 4.10 is a scatterplot of the data pairs. Does the straight line seem to “fit” the

data well? That is, does this straight-line model seem to be appropriate here? Or,

perhaps the true relationship between temperature and frequency is not a straight line,

but, rather a quadratic curve. The quadratic model fit appears in Figure 4.11.
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Figure 4.10: EI frequency at different temperatures with a straight-line fit.

4.2 Experimental data versus observational data

SCENARIO : We are interested in modelling the relationship between two variables, X

and Y . We observe the pair (X, Y ) on each of a sample of experimental units, and we

wish to use them to say something about the relationship. How we view the relationship

is dictated by whether or not we have experimental data or observational data.

EXPERIMENTAL DATA: Observations on X and Y are planned as the result of an

experiment. That is, we control or fix the values of X, and we observe the resulting Y .

• X = dose of a drug, Y = change in blood pressure for a human subject

• X = concentration of toxic substance, Y = number of mutant offspring observed

for a pregnant rat

• X = temperature, Y = frequency of electrical impulses
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Figure 4.11: EI frequency at different temperatures with a quadratic fit.

OBSERVATIONAL DATA: We observe both X and Y values, neither of which is under

our control. For example,

• X = weight, Y = height of a human subject

• X = average heights of plants in a plot, Y = yield

• X = SAT score, Y = first year college GPA.

REMARK : In experimental data situations, there is a distinction between what we call

X and what we call Y , because the values of X are specified by the investigator (hence, X

is fixed). In observational data situations, we do not choose the values of X; we merely

observe the pair (X, Y ). In this setting, the X variable is best regarded as random.

RESULT : With experimental data, when X is best regarded as fixed, regression analysis

methods are appropriate, whereas, with observational data, when X is best regarded as

a random variable, correlation analysis methods are appropriate.
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RELATIONSHIPS BETWEEN TWO VARIABLES : In some situations, scientific theory

may suggest that two variables, X and Y , are functionally related, e.g., Y = g(X).

However, even if there is no suitable theory, we may still suspect that some kind of

systematic relationship between X and Y exists, and we may be able to choose a function

g that provides a reasonable empirical description.

PRACTICAL PROBLEM : In most situations, the values we observe for Y (and some-

times X) are not exact. In particular, due to biological variation among experimental

units sampling error, imprecision and/or inaccuracy of measuring devices, etc., we may

only observe values of Y (and also possibly X) with error. Thus, based on a sample of

(X,Y ) pairs, our ability to see the exact relationship is obscured by this error.

STATISTICAL MODELS : These considerations dictate how we should think of formal

statistical models for each situation:

• Experimental data: A natural way to think about Y is by Y = g(x) + ε. Here, we

believe the function g describes the relationship, but values of Y we observe are not

exactly equal to g(x) because of the errors mentioned above. The additive error ε

characterises this, just as in our ANOVA models. In this situation, the following

terminology is often used:

– Y = “response” or “dependent variable,” and

– X = “predictor,” “independent variable,” or “covariate.”

• Observational data: In this situation, there is really not much distinction between

X and Y , as both are seen as random. Here, the terms “independent” and “depen-

dent” variable may be misleading. For example, if we have observed n randomly

selected subjects and record X = weight and Y = systolic blood pressure, we may

be just as interested in how Y relates to X as we are in how X relates to Y !

We begin our discussion of these problems by considering regression models appropriate

for experimental data. Correlation analysis for observational data is addressed later.
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4.3 An introduction to regression models

OBJECTIVE : The goal of regression analysis is to model the relationship between a

response variable Y and one or more independent variables, say, x1, x2, ..., xp. That is,

we want to find a function g that describes the relationship between Y and x1, x2, ..., xp.

Consider the following statistical model

Y = g(x1, x2, ..., xp) + ε,

where E(ε) = 0. You see that this model consists of two parts: (1) the deterministic

part, Y = g(x1, x2, ..., xp), and (2) the random part ε. From our previous discussion, we

know that, in practice, it is unreasonable to think that the observed values of Y will be

perfectly related to x1, x2, ..., xp through the g function. The random error ε conveys the

fact that there will (most likely) not be a perfect relationship.

REMINDER: It is important to remember that in this regression model, the independent

variables x1, x2, ..., xp are fixed; they are not random, and they are measured without

error. Since, E(ε) = 0, we can write the model equivalently as

E(Y |x1, x2, ..., xp) = g(x1, x2, ..., xp).

That is, the expected value of our response Y , conditioned on the k independent variables

x1, x2, ..., xp, is equal to g(x1, x2, ..., xp).

ASSUMPTIONS ON THE ERROR TERM : It is common to assume that ε ∼ N (0, σ2).

That is, the error term is normally distributed with mean zero and variance σ2. The

variance quantifies the amount of dispersion about the true regression function

g(x1, x2, ..., xp). Note that if ε ∼ N (0, σ2), it follows immediately that

Y ∼ N{g(x1, x2, ..., xp), σ
2}.

Thus, E(Y |x1, x2, ..., xp) = g(x1, x2, ..., xp) and V (Y |x1, x2, ..., xp) = σ2. The last point

about the variance is important; namely, that the variance of Y is constant across the

values of x1, x2, ..., xp. This is analogous to the homoscedastic assumption on the errors

in the one-way ANOVA model.
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STRAIGHT-LINE SETTING : Suppose that p = 1; that is, we only have one independent

variable, say x. Oftentimes it is reasonable to assume that the relationship between Y

and x, i.e., the form of g, is, in fact, a straight line. We may write this as

Y = β0 + β1x + ε or, equivalently E(Y |x) = β0 + β1x,

for some values β0 and β1. Here, g(x) = β0 + β1x is a straight line with intercept β0

(i.e., the value of Y when x = 0) and slope β1. The slope β1 expresses the rate of change

in Y , i.e., the change in the mean of Y brought about by a one-unit change in x.

TERMINOLOGY : We call the model Y = β0 + β1x + ε a simple linear regression

model. The modifier “simple” means that we are considering only one predictor x. The

term “linear” is not taken to mean that the true regression equation g(x) = β0 + β1x

is a straight line. In fact, many linear regression models are not straight lines. Linear

regression models that include more than one x are called multiple linear regression

models.

TERMINOLOGY : In the simple linear regression model Y = β0 +β1x+ ε, the constants

β0 and β1 are called regression parameters. These parameters are fixed, unknown

values (they refer to the true relationship between Y and x); thus, as you may suspect,

they must be estimated with data. Recall that in a regression setting, x is fixed and

that ε is a random variable with mean zero. Clearly, Y , since it is a function of ε, is a

random quantity, too. Since E(Y |x) = g(x) = β0 + β1x, for a given value of x, we would

expect Y to equal g(x) = β0 + β1x; however, due to random variation (e.g., biological,

measurement error, etc.), we see Y values dispersed about the line g(x) = β0 + β1x.

OTHER MODELS : In theory, there are many different possible g functions one could

use to model the relationship between Y and x. We don’t have to restrict ourselves to

straight-line models. For example, it could be that the true g function that relates Y to

x is given by g(x) = β0 + β1x + β2x
2 or g(x) = β0 + β1x + β2x

2 + β3x
3. Even though the

quadratic and cubic equations are not straight lines, they still fall into a general class of

models called linear regression models. We will discuss this in a more mathematical

context shortly.
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A NONLINEAR MODEL: In some situations, a different type of model may be appro-

priate. For example, suppose that Y is some measure of growth of a plant and x denotes

time, and that we want to study how Y relates to x. Here, we would eventually expect

the relationship to “level off” when x gets large, as plants can not continue to get large

forever! A popular model for this is the logistic model given by

Y =
β0

1 + β1eβ2x

︸ ︷︷ ︸
g(x)

+ε,

as this g function, when β2 < 0, would begin to “flatten out” for large values of x.

NOTE : In the quadratic equation with g(x) = β0 + β1x + β2x
2, note that, although the

function is no longer a straight line, the regression parameters β0, β1, and β2 enter in a

linear fashion. Contrast this with the logistic growth model. This function is not linear

as a function of β0, β1, and β2; rather, it is better described as nonlinear.

MATHEMATICAL DESCRIPTION : The model

Y = β0 + β1x1 + β2x2 + · · ·+ βpxp︸ ︷︷ ︸
g(x1,x2,...,xp)

+ε,

with regression parameters β0, β1, ..., βp, is called a linear regression model. As hinted

at earlier, this “linear” term refers to how each term enters the regression equation. It

does not refer to the shape of the true regression function g. To be precise, when we refer

to a model as a “linear model,” we mean that the true regression function g is linear in

the parameters. Mathematically, this means that the p + 1 partial derivatives

∂g(β0, β1, ..., βp)

∂βi

i = 0, 1, ..., p,

are all free of the parameters β0, β1, ..., βp. Each of the models is a linear model:

Y = β0 + β1x︸ ︷︷ ︸
g(x)

+ε

Y = β0 + β1x + β2x
2

︸ ︷︷ ︸
g(x)

+ε

Y = β0 + β1 log x1 + β2

√
cos x2︸ ︷︷ ︸

g(x1,x2)

+ε.
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It is easy to show that each model above is linear in the parameters. On the other hand,

the logistic model is not linear since

∂

∂β0

(
β0

1 + β1eβ2x

)
=

1

1 + β1eβ2x
,

which is not free of the regression parameters β1 and β2.

NOTE : The class of linear models is enormous! Many models used in statistics fall into

this classification. For example, this class includes the ANOVA and regression models, as

well as many models used with time series analysis, multivariate data, spatial processes,

and others.

GOALS : For the linear statistical model Y = β0 + β1x1 + β2x2 + · · · + βpxp + ε, among

other things, our main goals in regression analysis will be to

• estimate the regression parameters, β0, β1, ..., βp

• diagnose the fit (i.e., perform model diagnostics),

• estimate mean responses and make predictions about future values.

We will start discussing these issues in our simple linear regression setting where

g(x) = β0 + β1x. Later, we’ll extend these ideas to multiple regression settings.

4.4 Using least squares to fit a straight line regression

TERMINOLOGY AND ASSUMPTIONS : When we say, “fit a regression model,” we

basically mean that we are estimating the parameters in the model with observed data.

The method of least squares provides a way to do this. For observations (xi, Yi),

i = 1, 2, ..., n, we postulate the simple linear regression model

Yi = β0 + β1xi + εi,

where εi ∼ iid N (0, σ2). We wish to fit this model by estimating the intercept and slope

parameters, β0 and β1, respectively.
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Figure 4.12: A scatterplot with straight line and residuals associated with the straight line.

THE METHOD OF LEAST SQUARES : The most widely-accepted method for estimat-

ing β0 and β1 is using the method of least squares. It turns out to be the most

appropriate way to estimate β0 and β1 under the normality assumption on the error term

ε. For each Yi, and given values of β0 and β1, note that the quantity

ei = Yi − (β0 + β1xi)

measures the vertical distance from Yi to the line β0 + β1xi. This distance is called the

ith residual (for particular values of β0 and β1). If a point falls above the line in the Y

direction, the residual is positive. If a point falls below the line in the Y direction, the

residual is negative. A natural way to measure the overall deviation of the observed data

Yi from their means, β0 + β1xi, is with the residual sum of squares given by

SSE(β0, β1) =
n∑

i=1

e2
i =

n∑
i=1

{Yi − (β0 + β1xi)}2.

The method of least squares says to find the estimates of β0 and β1, say, β̂0 and β̂1,

respectively, that minimise the sum of squared residuals; i.e., that makes the function
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SSE(β0, β1) as small as possible. A two-variable calculus argument is used to find the

form of the estimators β̂0 and β̂1. Taking partial derivatives of SSE(β0, β1) and setting

them equal to zero, we obtain the normal equations

∂SSE(β0, β1)

∂β0

= −2
n∑

i=1

(Yi − β0 − β1xi)
set
= 0

∂SSE(β0, β1)

∂β1

= −2
n∑

i=1

(Yi − β0 − β1xi)xi
set
= 0.

Solving this 2× 2 system for β0 and β1, one can show (verify!) that

β̂1 =
Sxy

Sxx

and β̂0 = Y − β̂1x

are the minimisers, where

Sxy =
n∑

i=1

(xi − x)(Yi − Y ) =
n∑

i=1

xiYi − 1

n

n∑
i=1

xi

n∑
i=1

Yi

and

Sxx =
n∑

i=1

(xi − x)2 =
n∑

i=1

x2
i −

1

n

(
n∑

i=1

xi

)2

.

The values β̂0 and β̂1 are called the least squares estimators for β0 and β1. The

residual sum of squares for the least-squares line is given by

SS[E] = SSE(β̂0, β̂1) =
n∑

i=1

{Yi − (β̂0 + β̂1xi)}2

=
n∑

i=1

(Yi − Ŷi)
2,

where Ŷi = β̂0 + β̂1xi denotes the ith fitted value. The value ei = Yi − Ŷi is called the

the ith least-squares residual.

Example 4.2 (oxygen.sas). The following data are rates of oxygen consumption of

birds (Y ) measured at different temperatures (x). Here, the temperatures were set by

the investigator, and the O2 rates, Y , were observed for these particular temperatures.

Thus, the assumption of a fixed x is justified.

x, (degrees Celcius) −18 −15 −10 −5 0 5 10 19

y, (ml/g/hr) 5.2 4.7 4.5 3.6 3.4 3.1 2.7 1.8
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Figure 4.13: Bird oxygen rate data for different temperatures.

The scatterplot of the data appears in Figure 4.13. It is always advisable to plot the data

first! The least-squares line is superimposed over the data.

CALCULATIONS : We have n = 8.

8∑
i=1

yi = 29 y = 3.625
8∑

i=1

y2
i = 114.04

8∑
i=1

xi = −14 x = −1.75
8∑

i=1

x2
i = 1160

8∑
i=1

xiyi = −150.4

Sxy = −150.4− 1

8
(29)(−14) = −99.65 Sxx = 1160− 1

8
(−14)2 = 1135.5.

Thus, we obtain

β̂1 =
−99.65

1135.5
= −0.0878, and

β̂0 = 3.625− (−0.0878)(−1.75) = 3.4714.

PAGE 83



CHAPTER 4 STAT 3601

The least-squares regression line is given by

Ŷi = 3.4714− 0.0878xi; i.e., Ô2Ratei = 3.4714− 0.0878TEMPi.

4.5 Properties of least-squares estimators

PROPERTIES OF THE ESTIMATORS : We consider the simple linear regression model

Yi = β0 + β1xi + εi, for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2). The following summarise

the important sampling distribution results.

(1) E(β̂0) = β0 and E(β̂1) = β1; that is, the least-squares estimators are unbiased.

(2) V (β̂0) = s00σ
2, where

s00 =
1

n
+

x2

Sxx

.

(3) V (β̂1) = s11σ
2, where

s11 =
1

Sxx

.

(4) Cov(β̂0, β̂1) = s01σ
2, where

s01 =
−x

Sxx

.

(5) E(MS[E]) = σ2, where

MS[E] ≡ SS[E]

n− 2
.

That is, the statistic σ̂2 ≡ MS[E] is an unbiased estimator of the error variance

σ2. As before, MS[E] is called the mean-squared error.

(6) Both estimators β̂0 and β̂1 are normally distributed.

(7) The random variable
SS[E]

σ2
=

(n− 2)MS[E]

σ2
∼ χ2

n−2.

(8) The mean-squared error MS[E] is independent of both β̂0 and β̂1.
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4.6 Confidence intervals and hypothesis tests for β0, β1, and σ2

The statistics β̂0 and β̂1 are point estimators of the true population parameters β0 and

β1, respectively. We now discuss how to obtain confidence intervals and hypothesis

tests for the true regression parameters β0 and β1.

INFERENCE FOR β1: From facts (1), (2), and (6) of the last section, recall that

β̂1 ∼ N (β1, s11σ
2).

where s11 = 1/Sxx. Thus, by standardising, it follows that

Z =
β̂1 − β1√

s11σ2
∼ N (0, 1).

Also, recall from Fact (7) that

(n− 2)MS[E]

σ2
∼ χ2

n−2,

and that from Fact (8), (n− 2)MS[E]/σ2 is independent of β̂1 (and, thus, is independent

of Z). Thus, the quantity

t ≡ β̂1 − β1√
s11MS[E]

=
(β̂1 − β1)/

√
s11σ2

√
(n−2)MS[E]

σ2 /(n− 2)
∼ tn−2.

Since t has a distribution free of all parameters, it is a pivot. Thus, we can use t to find

a 100(1 − α) percent confidence interval for β1. Straightforward calculations show that

this interval is given by

β̂1 ± tn−2,α/2

√
s11MS[E],

where tn−2,α/2 denotes the 1 − α/2 quantile of the t distribution with n − 2 degrees of

freedom. In addition, if we wanted to test, at level α,

H0 : β1 = β1,0

versus

H1 : β1 6= β1,0,

PAGE 85



CHAPTER 4 STAT 3601

for some specified value of β1,0, we would use

t =
β̂1 − β1,0√
s11MS[E]

as a test statistic with rejection region RR = {t : t > tn−2,α/2 or t < −tn−2,α/2}. If

our alternative hypothesis was one sided, we would simply adjust our rejection region

accordingly. P values are calculated as appropriate areas under the tn−2 distribution.

INFERENCE FOR β0: A completely analogous argument (try it!) can be used to show

that

t =
β̂0 − β0√
s00MS[E]

∼ tn−2,

where s00 = 1
n

+ x2

Sxx
, and that a 100(1− α) percent confidence interval for β0 is

β̂0 ± tn−2,α/2

√
s00MS[E].

In addition, a level α test of H0 : β0 = β0,0 versus H1 : β0 6= β0,0, for some specified value

of β0,0, can be performed using the test statistic

t =
β̂0 − β0,0√
s00MS[E]

with rejection region RR = {t : t > tn−2,α/2 or t < −tn−2,α/2}. If our alternative hypoth-

esis was one sided, we would simply adjust our rejection region accordingly. P values are

calculated as appropriate areas under the tn−2 distribution.

INFERENCE FOR σ2: Since (n− 2)MS[E]/σ2 ∼ χ2
n−2, it follows that

P

{
χ2

n−2,1−α/2 ≤
(n− 2)MS[E]

σ2
≤ χ2

n−2,α/2

}
= 1− α,

and consequently, a 100(1− α) percent confidence interval for σ2 is given by
(

(n− 2)MS[E]

χ2
n−2,α/2

,
(n− 2)MS[E]

χ2
n−2,1−α/2

)
.

Example 4.3 (oxygen.sas). For the oxygen rate data in Example 4.2, we have n = 8,

t6,0.025 = 2.447, χ2
6,0.975 = 1.2373, χ2

6,0.025 = 14.4494, β̂0 = 3.4714, and β̂1 = −0.0878. We

have MS[E] ≈ 0.028, s11 = 1/Sxx = 1/1135.5 ≈ 0.00088, and

s00 =
1

n
+

x2

Sxx

=
1

8
+

(−1.75)2

1135.5
≈ 0.128.
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• A 95 percent confidence interval for β1 is given by −0.0878±2.447
√

0.00088× 0.028

or (−0.0999,−0.0755),

• A 95 percent confidence interval for β0 is given by 3.4714± 2.447
√

0.128× 0.028 or

(3.3243, 3.6185), and

• A 95 percent confidence interval for σ2 is given by
(

6× 0.028

14.4494
,
6× 0.028

1.2373

)
, or (0.012, 0.136).

NOTE : In practice, the confidence interval for the slope parameter β1 is of primary

interest because of its connection to the predictor variable x in the regression model

Y = β0 + β1x + ε. The confidence interval for β0 is usually less meaningful (unless you

are interested in the mean of Y when x = 0). In our example, β1 has units of the rate of

change of oxygen consumption per unit change in temperature; i.e., ml/g/hr per degree

Celsius. Hence, given a one-degree increase in temperature, we are 95 percent confident

that the change in mean oxygen consumption rate is between −0.0999 and −0.0755.

SIMULTANEOUS (JOINT) CONFIDENCE REGIONS FOR β0 AND β1: The goal may

be to find a region in the β0-β1 plane that contains the vector (β0, β1) with probability

1 − α. This is called a 100(1 − α) percent confidence region for (β0, β1). Using

the intersection of the two individual confidence intervals, as described above, will have

simultaneous coverage less than 1− α. In this light, consider two different regions:

1. An exact elliptical region


(β0, β1) :

1

2MS[E]


 β̂0 − β0

β̂1 − β1



′ 
 n

∑
i xi

∑
i xi

∑
i x

2
i





 β̂0 − β0

β̂1 − β1


 ≤ F2,n−2,α





2. A rectangular region (equivalent to the intersection of two intervals) using a

Bonferroni-type correction

β̂0 ± tn−2,α/4

√
s00MS[E] and β̂1 ± tn−2,α/4

√
s11MS[E].

This pair constitutes a joint confidence region whose probability of joint coverage

is at least 1− α.
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4.7 Confidence intervals for linear functions of β0 and β1

Consider our straight-line regression model Yi = β0 + β1xi + εi, where εi ∼ iid N (0, σ2).

In many settings, it is of interest to make inferential statements about a linear com-

bination of the regression parameters. That is, we might want to write a confidence

interval or conduct a hypothesis test for the parameter θ = c0β0 + c1β1, where c0 and c1

are constants.

POINT ESTIMATOR FOR θ: Using the least-squares estimators of β̂0 and β̂1, the least

squares estimator for θ becomes

θ̂ = c0β̂0 + c1β̂1.

THE SAMPLING DISTRIBUTION OF θ̂: Recall that both β̂0 and β̂1 are both normally

distributed. Thus, since θ̂ is just a linear combination of β̂0 and β̂1, it, too, is normally

distributed. It is also easy to see that E(θ̂) = θ; i.e., θ̂ is unbiased for θ, and that the

variance of θ̂ is given by (verify!)

V (θ̂) ≡ σ2bθ = σ2
(
c2
0s00 + c2

1s11 + 2s01c0c1

)
.

Thus, we have that θ̂ ∼ N (θ, σ2bθ).
NOTE : You will see that the variance of our estimator σ2bθ , depends on the unknown

parameter σ2. An estimate of σ2bθ is given by

σ̂2bθ = MS[E]
(
c2
0s00 + c2

1s11 + 2s01c0c1

)
.

Now, whereas

Z =
θ̂ − θ

σbθ ∼ N (0, 1),

it follows that (verify!)

t =
θ̂ − θ

σ̂bθ ∼ tn−2.

Since t is a pivotal quantity, a 100(1−α) percent confidence interval becomes θ̂±tn−2,α/2σ̂bθ,
and tests of hypotheses concerning θ use the tn−2 reference distribution.
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SPECIAL CASE: CONFIDENCE INTERVALS FOR THE MEAN OF Y : One very

useful application of the preceding result is to the problem of estimating the mean

value of Y at a fixed value of x, say, x0. In our straight-line regression setting,

E(Y |x0) ≡ µY |x0 = β0 + β1x0.

However, you quickly will note that E(Y |x0) = β0 + β1x0 is just a linear combination

of β0 and β1 with c0 = 1 and c1 = x0. Thus, the previous result applies to this special

situation! With c0 = 1 and c1 = x0, we have that the variance of θ̂ = β̂0 + β̂1x0 is given

by (verify!)

V (θ̂) ≡ σ2bθ = σ2
(
s00 + x2

0s11 + 2s01x0

)
= σ2

{
1

n
+

(x0 − x)2

Sxx

}
.

An estimate of this variance is given by

σ̂2bθ = MS[E]

{
1

n
+

(x0 − x)2

Sxx

}
.

Thus, a 100(1 − α) percent confidence interval for E(Y |x0) = β0 + β1x0, the mean

response of Y for a fixed value of x0, is given by

(β̂0 + β̂1x0)± tn−2,α/2

√
MS[E]

{
1

n
+

(x0 − x)2

Sxx

}
.

LENGTH OF THIS CONFIDENCE INTERVAL: The confidence interval for E(Y |x0) =

β0 + β1x0 will be different depending on the value of x0. In fact, the expression for σ̂2bθ
above will be smallest when x0 = x, and will get larger the farther x0 is from x in either

direction. This implies that the precision with which we estimate E(Y |x0) = β0 + β1x0

decreases the farther we get away from x. This makes intuitive sense−we would expect to

have the most “confidence” in our fitted line near the “center” of the observed data. The

result is that the confidence intervals for E(Y |x0) = β0 + β1x0 will be wider the farther

x0 is from x. Thus, if the fitted regression line is used to estimate means for values of

x besides those used in the experiment, it is important to use a range of x values which

contains the future values of interest.

EXTRAPOLATION : It is sometimes desired to estimate E(Y |x0) = β0 + β1x0 based

on the fit of the straight line for values of x0 outside the range of x values used in the
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experiment. This is called extrapolation, and can be very dangerous. In order for

our inferences to be valid, we must believe that the straight line relationship holds for x

values outside the range where we have observed data. In some situations, this may be

reasonable; in others, we may have no theoretical basis for making such a claim without

data to support it. Thus, it is very important that the investigator have an honest sense

of the relevance of the straight line model for values outside those used in the experiment

if inferences such as estimating the mean for such x0 values are to be reliable.

Example 4.4 (oxygen.sas). In Example 4.2, suppose that our researcher desires to

get a 95 percent confidence interval for the mean O2 rate of birds in an environment at

x0 = 2.5 degrees Celcius. She is thus interested in the linear combination

E(Y |x0 = 2.5) = β0 + 2.5β1.

Using our last results, we see the desired confidence interval is

[3.4714− 2.5(0.0878)]± 2.447×
√

0.028

{
1

8
+

[2.5− (−1.75)]2

1135.5

}
,

or (3.0975, 3.4066) ml/g/hr. Thus, one would expect for the mean O2 rate of birds living

in a 2.5 degree Celcius environment to be between 3.0975 and 3.4066.

CONFIDENCE BANDS : A 100(1 − α) percent confidence band is simply the locus

of confidence intervals for E(Y |x) = β0 + β1x for all x. A 95 percent confidence band for

the bird-oxygen data from Example 4.2 is given in Figure 4.14.

UNFORTUNATE REALITY : If I obtain 100(1 − α) percent confidence intervals for

E(Y |x) = β0 + β1x at many different values of x, the probability that all intervals

contain their respective means is less than 1− α.

SIMULTANEOUS CONFIDENCE BANDS : A 100(1−α) percent simultaneous con-

fidence band for the true regression function E(Y |x) = β0 + β1x is given by

(β̂0 + β̂1x)±
√

2F2,n−2,α

√
MS[E]

{
1

n
+

(x− x)2

Sxx

}
,
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Figure 4.14: A 95 percent confidence band on E(Y |x) = β0 + β1x for the bird oxygen

data.

for all x ∈ R. Note that this expression is identical to the expressions for the end-

points for the confidence interval for E(Y |x) = β0 + β1x except that
√

2F2,n−2,α replaces

tn−2,α/2. Since
√

2F2,n−2,α ≥ tn−2,α/2 for all n and α, the 100(1−α) percent simultaneous

confidence band is wider than the collection of all 100(1 − α) percent confidence inter-

vals for E(Y |x) = β0 + β1x. This simultaneous confidence band is sometimes called the

Working-Hotelling simultaneous confidence band.

4.8 Prediction intervals for a future Y using simple-linear re-

gression

Sometimes, depending on the context, we may not be interested in the mean E(Y |x0) =

β0 + β1x0, but rather the actual value of Y we might observe when x = x0. On the

surface, this may sound like the same problem, but they are, indeed, very different. For

example, consider a stockbroker who would like to learn about the value of a stock based
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on previous data. In this setting, the stockbroker would like to predict or forecast

the actual value of the stock, say, Y0, that might be observed when x = x0. On the

other hand, the stockbroker probably does not care about what might happen “on the

average” at some future time x0; that is, she is probably not concerned with estimating

E(Y |x0) = β0 + β1x0.

REMARK : In this kind of situation, we are interested not in the population mean

E(Y |x0) = β0 +β1x0, but rather the actual value that might be taken on by the random

variable, Y . In the context of our model, we are interested in the “future” observation

Y0 = β0 + β1x0 + ε0,

where ε0 is the “error” associated with Y0 that makes it differ from the mean β0 + β1x0.

It is important to recognise that Y0 is not a parameter but rather is a random variable;

thus, we do not wish to estimate a fixed parameter, but, instead, we wish to predict a

random quantity.

POINT ESTIMATOR: Our point estimator of Y0 is given by the quantity

Ŷ0 = β̂0 + β̂1x0.

This is identical to before when we were estimating the mean E(Y |x0) = β0 + β1x0.

However, we use a different symbol in this context to remind ourselves that we are

interested in predicting Y0, not estimating E(Y |x0). We call Ŷ0 a prediction or forecast

rather than an “estimate” to make the distinction clear. Of course, just as we do in the

estimation of fixed parameters, we would still like to have some idea of how well we can

predict/forecast. To get an idea, we would like to characterise the uncertainty that we

have about Ŷ0 as a guess for Y0. Intuitively, there will be two sources of error:

• part of the error in Ŷ0 arises from the fact that we do not know β0 and β1 and that

they must estimated from the observed data.

• additional error arises from the fact that Y0 itself is a random variable, so its

value varies itself! Thus, additional uncertainty is introduced because we are trying

to characterise a quantity that itself is uncertain.
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THE SAMPLING DISTRIBUTION OF THE ERROR IN PREDICTION : The error

in prediction Ŷ0 − Y0 is normally distributed; more precisely,

Ŷ0 − Y0 ∼ N
{

0, σ2

[
1 +

1

n
+

(x0 − x)2

Sxx

]}
.

Comparing the variance Ŷ0 − Y0 to the variance of Ê(Y |x0) in the last section, we see

that there is an extra “1” added on. This accounts for the additional variation arising

from the fact that Y0 itself is a random quantity, and we have to predict its value. It

follows straightforwardly that

Z =
Ŷ0 − Y0√

σ2
{

1 + 1
n

+ (x0−x)2

Sxx

} ∼ N (0, 1)

and that

t =
Ŷ0 − Y0√

MS[E]
{

1 + 1
n

+ (x0−x)2

Sxx

} ∼ tn−2.

Thus, using t as a pivot, it follows that

Ŷ0 ± tn−2,α/2

√
MS[E]

{
1 +

1

n
+

(x0 − x)2

Sxx

}

︸ ︷︷ ︸
standard error of bY0−Y0

is a 100(1− α) percent prediction interval for Y0.

Example 4.5 (oxygen.sas). In Example 4.2, suppose that our researcher desires to

get a 95 percent prediction interval for a particular bird in an environment at x0 = 2.5

degrees Celcius (compare this with Example 4.5). This prediction interval is given by

[3.4714− 2.5(0.0878)]± 2.447×
√

0.028

{
1 +

1

8
+

[2.5− (−1.75)]2

1135.5

}
,

or (2.8123, 3.6918), Thus, we are 95 percent confident that the O2 rate for this particular

bird will be between 2.8123 and 3.6918. One will note that the prediction interval for a

single bird at x0 = 2.5 is wider than the confidence interval for E(Y |x0 = 2.5). This is

because of the additional variability arising from having to predict a random variable,

Y0, rather than estimating a mean, E(Y |x0).
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PREDICTION BANDS : A 100(1 − α) percent prediction band is simply the locus

of prediction intervals for Y0 for all possible values of x = x0. This provides a graphical

representation of the prediction intervals. Figure 10.10 on p. 412 (Rao) shows a nice

comparison between prediction bands for Y0 and confidence bands for E(Y |x) = β0+β1x.

SIMULTANEOUS PREDICTION BANDS : A 100(1− α) percent simultaneous pre-

diction band for Y is given by

(β̂0 + β̂1x)±
√

2F2,n−2,α

√
MS[E]

{
1 +

1

n
+

(x− x)2

Sxx

}
,

for all x ∈ R. Note that this expression is identical to the expressions for the endpoints for

the prediction interval for Y0 except that
√

2F2,n−2,α replaces tn−2,α/2. This simultaneous

prediction band is sometimes called the Working-Hotelling simultaneous prediction

band.

4.9 The analysis of variance for simple linear regression

We may also use an analysis of variance approach to test the significance of the

regression; this approach, as before, is based on a partitioning of total variability in the

observed response data Y . To be precise, algebraically, it follows that

n∑
i=1

(Yi − Y )2

︸ ︷︷ ︸
SS[TOT]

=
n∑

i=1

(Ŷi − Y )2

︸ ︷︷ ︸
SS[R]

+
n∑

i=1

(Yi − Ŷi)
2

︸ ︷︷ ︸
SS[E]

.

• SS[TOT] denotes the total sums of squares. SS[TOT] measures the total varia-

tion in the data Y1, Y2, ..., Yn. One will also note that this is just the numerator of

the sample variance S2 = (n− 1)−1
∑n

i=1(Yi − Y )2.

• SS[R] denotes the regression sums of squares. SS[R] measures the variation in

the data Y1, Y2, ..., Yn explained by the straight-line model.

• SS[E] denotes the error sums of squares. SS[E] measures the variation in the

data Y1, Y2, ..., Yn not explained by the straight-line model.
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COMPUTING TIP : Note that an alternative expression for SS[R] is given by

SS[R] =
n∑

i=1

(Ŷi − Y )2

=
n∑

i=1

[
(β̂0 + β̂1xi)− (β̂0 + β̂1x)

]2

= β̂2
1

n∑
i=1

(xi − x)2

= β̂2
1Sxx =

S2
xy

Sxx

.

THE ANOVA TABLE FOR STRAIGHT-LINE REGRESSION : Just as we did with the

one-way layout, we can combine all of this information into a tabular display.

Table 4.12: The general form of an analysis of variance table for straight-line regression.

Source df SS MS F

Regression 1 SS[R] MS[R] F = MS[R]
MS[E]

Error n− 2 SS[E] MS[E]

Total n− 1 SS[TOT]

NOTES ON THE GENERAL ANOVA TABLE STRUCTURE :

• The degrees of freedom add down. There are n − 1 degrees of freedom associated

with SS[TOT]; this can be viewed as a statistic that has “lost” a degree of freedom

for having to estimate the overall mean of Y (β0) with Y . There is only one degree

of freedom associated with SS[R] since there is only one predictor variable. The

degrees of freedom for SS[E] can be thought of as the divisor needed to create an

unbiased estimator of σ2. Recall that SS[E]/(n− 2) is an unbiased estimator of σ2.

• The sum of squares also add down; this follows from the algebraic identity presented

at the beginning of this section; namely, SS[TOT] = SS[R] + SS[E].

• Mean squares are the sums of squares divided by their degrees of freedom.
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USING THE F STATISTIC : The F statistic tests whether or not at least one of the

independent variables add to the model; i.e., whether or not at least one of the β’s

associated with the predictor variables is nonzero. In the straight-line regression setting,

we only have one x variable! Thus, in the straight-line setting, the F statistic tests

H0 : β1 = 0

versus

H1 : β1 6= 0.

The interpretation of the test is as follows: Under the assumption that a straight line

relationship exists, we are testing whether or not the slope of this relationship is, in fact,

zero. A zero slope means that there is no systematic change in mean along with change

in x; that is, there is no linear association between Y and x.

MATHEMATICAL FORMULATION OF THE F STATISTIC : More advanced linear

model arguments (that we will not discuss) show that when H0 is true, SS[R]/σ2 =

MS[R]/σ2 ∼ χ2
1 and that SS[E]/σ2 ∼ χ2

n−2. Furthermore, it follows that SS[R] and SS[E]

are independent. Thus, when H0 is true,

F =
MS[R]

MS[E]
=

SS[R]/σ2

SS[E]
σ2 /(n− 2)

∼ F1,n−2.

Thus, we can use the F1,n−2 distribution as a reference distribution to test H0 : β1 = 0

versus H1 : β1 6= 0. Even though this is a two-sided H1, we place the entire rejection

region in the upper tail. Thus, the rejection region is given by RR = {F : F > F1,n−2,α},
where F1,n−2,α denotes the 1−α quantile of the F1,n−2 distribution. P -values are computed

as right tail areas on the F1,n−2 distribution as well.

NOTE : The F test of H0 : β1 = 0 versus H1 : β1 6= 0 is equivalent to the two-sided t

test of H0 : β1 = β1,0 versus H1 : β1 6= β1,0, where β1,0 = 0. This follows (verify!) because

t2 =

(
β̂1 − 0√
s11MS[E]

)2

=
MS[R]

MS[E]
= F

from the ANOVA table. The t test is a more flexible procedure than the F test if interest

lies in drawing inference about β1. With a t procedure, one can specify a nonzero value
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of β1,0 and use one-sided alternatives. The F test, on the other hand, only allows a

two-sided alternative with β1,0 = 0.

EXPECTED MEAN SQUARES : Theorem B.2 (Appendix B, Rao) can be used to show

that the expected mean squares, that is, the values estimated by MS[R] and MS[E],

are given by E(MS[R]) = σ2 + β2
1Sxx and E(MS[E]) = σ2, respectively. Hence, if β1 = 0,

i.e., there is no linear relationship between Y and x, the two mean square statistics, MS[R]

and MS[E], should be about the same since they are estimating the same quantity. This

would yield an F statistic that was close to one. On the other hand, if β1 6= 0, then we

would expect the F ratio to be larger than 1. This gives another reason of why the F

ratio will get large when H0 is not true.

THE COEFFICIENT OF DETERMINATION : Since SS[TOT] = SS[R] + SS[E], it fol-

lows that the proportion of the total variation in the data explained by the model is

R2 =
SS[R]

SS[TOT]
.

The statistic R2 is called the coefficient of determination. Clearly, 0 ≤ R2 ≤ 1.

The larger the R2, the better the deterministic part of the straight-line model β0 + β1x

explains the variability in the data. Thus, an R2 value “close” to 1 is taken as evidence

that the regression model does “a good job” at describing the variability in the data.

IMPORTANT : It is critical to understand what R2 does and does not measure. Its value

is computed under the assumption that the simple linear regression model is correct;

i.e., that it is a good description of the underlying relationship between Y and x. Thus,

it assesses, if the relationship between x and Y really is a straight line, how much of the

variation in the data may actually be attributed to that relationship rather than just

to inherent variation. If R2 is small, it may be that there is a lot of random inherent

variation in the data, so that, although the straight line is a reasonable model, it can

only explain so much of the observed overall variation. Alternatively, R2 may be close to

1, but the straight-line model may not be the most appropriate model! In fact, R2 may

be quite “high,” but, in a sense, is irrelevant, because it assumes the straight line model

is correct. In reality, a better model may exist (e.g., a quadratic model, etc.).

PAGE 97



CHAPTER 4 STAT 3601

Table 4.13: The ANOVA table for the bird oxygen rate data from Example 4.2.

Source df SS MS F

Regression 1 8.745 8.745 308.927

Error 6 0.170 0.028

Total 7 8.915

Example 4.6 (oxygen.sas). With the bird-oxygen rate data of Example 4.2, we now

present the ANOVA table. The regression sum of squares is given by

SS[R] =
S2

xy

Sxx

=
(−99.65)2

1135.5
= 8.745.

The total sum of squares is given by

SS[TOT] =
8∑

i=1

(yi − y)2 = 8.915.

Thus, the error sum of squares (obtained by subtraction) is

SS[E] = SS[TOT]− SS[R] = 8.915− 8.745 = 0.170.

The complete ANOVA table appears in Table 4.13.

ANALYSIS : If the researcher wants to test H0 : β1 = 0 (no linear trend between oxygen

rate and temperature) versus H1 : β1 6= 0, she would strongly reject H0 since F = 308.927

is much larger than F1,6,0.05 = 5.99. There is overwhelming evidence to support the

contention that the oxygen rate and temperature are linearly related. You will recall

that this was the same conclusion reached by examining the confidence interval for β1.

The coefficient of determination is given by

R2 =
SS[R]

SS[TOT]
=

8.745

8.915
= 0.981.

Thus, 98.1 percent of the variability in the oxygen rates is explained by the independent

variable (temperature).
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4.10 Checking the assumptions for straight-line regression

We have considered the simple linear regression model Yi = β0 + β1xi + εi, for

i = 1, 2, ..., n, where εi ∼ iid N (0, σ2). Of course, like all statistical models, there are

assumptions that go along with this one; these assumptions are the following:

1. the errors are normally distributed (with mean zero),

2. the errors have constant variance,

3. the errors are independent, and

4. the true form of the regression function g, is, in fact, a straight line g(x) = β0+β1x.

RESIDUALS : As in the one-way layout, we never get to see the εi’s (i.e., the errors)

because they are unobservables. However, we can observe the residuals. Recall that

ei = yi − ŷi

is the residual associated with yi. Also, recall that ŷi = β̂0 + β̂1xi. Note how the model’s

residual takes the familiar form of “observed” y minus the “predicted” ŷ.

DIAGNOSING NORMALITY : If we specify that εi ∼ iid N (0, σ2) and the normality

assumption holds, then the residuals are also normally distributed. Mathematics can

show that when the model holds, ei, when viewed as a random variable; i.e.,

ei = Yi − Ŷi ∼ N
[
0, σ2

{
1−

(
1

n
+

(xi − x)2

Sxx

)}]
.

Thus, if the normality assumption is true, and the model holds, a histogram of the

observed ei = yi − ŷi should look normally distributed, centered around zero.

NORMALITY PLOTS : As in the one-way layout, a normal probability plot is con-

structed by plotting the n ordered residuals against the n ordered quantiles from the

standard normal distribution. If the normality assumption holds, and the model is cor-

rect, this plot should look like a straight line. Small departures from normality are usually

of little concern in regression analysis. However, large departures could drastically affect

the validity of our confidence intervals and hypothesis tests.
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Figure 4.15: hiv study: cd4 increase versus drug concentration.

Example 4.7. In order to assess the effects of drug concentration on the resulting

increase in CD4 counts, physicians used a sample of n = 50 advanced HIV patients with

different drug concentrations and observed the resulting CD4 count increase. (Fictitious)

data appear in Figure 4.15. There looks to be a significant linear trend between drug

concentration and CD4 increase. In fact, the test for H0 : β1 = 0 is highly significant

(P < 0.0001) and R2 = 0.927. A normal probability plots looks fine.

DIAGNOSING NONCONSTANT VARIANCE AND OTHER MODEL INADEQUA-

CIES : A good visual display to use for diagnosing nonconstant variance and model

misspecification is the plot of residuals versus predicted values; i.e., a plot of ei versus ŷi.

This is sometimes called a residual plot. If the model holds, it follows that

Cov(ei, Ŷi) = 0;

i.e., the residuals and predicted values are uncorrelated. Thus, residual plots that

display nonrandom patterns suggest that there are some problems with our model as-

sumptions. In particular, if a nonconstant variance problem exists, the residual plot will
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Figure 4.16: hiv study: Residual plot from straight-line fit.

likely display a “fanning out” shape. Also, if the true form of the regression function is

misspecified, the residual plot should show the exact nature of the misspecification.

Example 4.7 (continued). From the residual plot in Figure 4.16, we see clear evidence

that the straight line model Yi = β0 + β1xi + εi is not appropriate. The residual plot

reveals that the straight-line fit just does not capture all the structure that is present in

the data. The plot suggests that perhaps a curvlinear g function should be used, say,

g(x) = β0 + β1x + β2x
2 + β3x

3.

Example 4.8. An entomological experiment was conducted to study the survivability of

stalk borer larvae. It was of interest to develop a model relating the mean size of larvae

(cm) as a function of the stalk head diameter (cm). Data from the experiment appear

in Figure 4.17. There looks to be a moderate linear trend between larvae size and head

diameter size. In fact, the test for H0 : β1 = 0 is highly significant (P < 0.001) and

R2 = 0.625. A normal probability plots looks fine. However, from the residual plot in

Figure 4.18, we see clear evidence of a violation in the constant variance assumption.
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Figure 4.17: Entomology experiment: Larvae size versus head diameter size.

TRANSFORMATIONS : We have already discussed the notion of transforming the data

as a way of handling violations of the usual assumptions. In the regression context, this

may be done in a number of ways. One way is to invoke an appropriate transformation,

and then postulate a regression model on the transformed scale. Sometimes, in fact,

it may be that, although the data do exhibit constant variance on the original scale,

they may on some transformed scale. However, it is important to remember that if a

transformation is used, the resulting inferences apply to this transformed scale (and no

longer to the original scale). Another approach is to proceed with a regression method

known as weighted-least squares. In a weighted regression analysis, different responses

are given different weights depending on their variances; see § 10.10 in Rao.

OUTLIERS : Another problem is that of outliers; i.e., data points that do not fit well

with the pattern of the rest of the data. In straight-line regression, an outlier might be an

observation that falls far off the apparent approximate straight line trajectory followed

by the remaining observations. Practitioners often “toss out” such anomalous points,

which may or may not be a good idea. If it is clear that an “outlier” is the result of a
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Figure 4.18: Entomology experiment: Residual plot from straight-line fit.

mishap or a gross recording error, then this may be acceptable. On the other hand, if no

such basis may be identified, the outlier may, in fact, be a genuine response; in this case,

it contains information about the process under study, and may be reflecting a legitimate

phenomenon. In this case, “throwing out” an outlier may lead to misleading conclusions,

because a legitimate feature is being ignored.

LEVERAGES : To identify outliers, we should consider first looking at the residual plot

of ei versus ŷi. However, when interpreting residual plots, recall that

ei = Yi − Ŷi ∼ N {
0, σ2(1− hii)

}
,

where

hii =
1

n
+

(xi − x)2

Sxx

is called the leverage for the ith case. So, in general, the residuals (unlike the errors) do

not have constant variance! Also, the residuals (unlike the errors) are slightly correlated!

Observations where xi is far away from x will have large values of hii. However, not all

observations with large leverages are necessarily outliers.
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STUDENTISED RESIDUALS : To account for the different variances among residuals,

we consider “studentising” the residuals (i.e., dividing by an estimate of their standard

deviation). There are two ways to do this.

1. Internally studentised residuals:

ri =
ei√

s2(1− hii)
,

where s2 = MS[E] is computed from all of the data. Calculations can show that

E(ri) = 0 and V (ri) = 1; that is, internally studentised residuals have a constant

variance regardless of the location of the x’s. Values of |ri| larger than 3 or so

should cause concern.

2. Externally studentised residuals:

ti =
ei√

s2
−i(1− hii)

,

where s2
−i = MS[E] computed from all of the data except the ith case. It can be

shown algebraically that, in the straight-line regression case,

s2
−i =

(n− 1)s2 − e2
i /(1− hii)

n− 2
.

DETECTING OUTLIERS : If the εi’s are normally distributed, then it turns out that,

in the straight-line regression case, ti ∼ tn−2. However, ri does not follow a well-known

distribution. Consequently, many feel that the externally studentised are more useful for

outlier detection. How do we use the ti’s to formerly detect outliers? If the investigator

suspects that case i may be an outlier, prior to examining the data, then since ti ∼ tn−2, he

could compare ti to the tn−2 distribution and classify case i as an outlier if |ti| ≥ tn−2,α/2.

In practice, however, often the investigator has no predetermined case to investigate as

an outlier. So, he examines each case (computes the ti’s for all cases) and then chooses

the largest one in magnitude to test as an outlier (so, actually, n tests are being carried

out simultaneously). To correct for multiplicity, we can use the Bonferroni approach to

multiple testing. To test for outliers in n observations at the α level of significance, we

need to use tn−2,α/2n as a critical value for each |ti|.
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STRATEGIES TO DEAL WITH OUTLIERS : What should we do if an outlier (or

outliers) are identified? Unfortunately, there is no clear-cut answer! However, here are

some possibilities:

1. Delete outliers and redo the analysis (new outliers may surface).

2. Sometimes the purpose of the experiment is just to identify the outliers. In this

case, there is no need to redo the analysis.

3. Check the experimental circumstances surrounding the data collection for the out-

lying cases.

4. Report the analysis both with and without the analysis and let the reader decide.

4.11 Correlation analyses

In most of our discussions up until now, the variable x has been best regarded as fixed.

In this setting, the methods of regression are appropriate in relating a response Y to x.

In observational data situations, however, we do not choose the values of x; rather,

we merely observe the pair (X, Y ). Thus, the X variable is best regarded as random.

In this setting, we, thus, must think about the bivariate distribution of the random

vector (X,Y ).

BIVARIATE DISTRIBUTIONS : Suppose that the random vector (X,Y ) has the con-

tinuous joint pdf fX,Y (x, y). The correlation coefficient, ρX,Y ≡ ρ, is a parameter

associated with the bivariate model fX,Y (x, y) that has the following properties:

• The linear relationship between X and Y is characterised by the parameter ρ, where

−1 ≤ ρ ≤ 1. If ρ = 1, then all possible values of X and Y lie on a straight line with

positive slope. If ρ = −1, then all possible values of X and Y lie on a straight

line with negative slope. If ρ = 0, then there is no linear relationship between

X and Y .
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• When 0 < ρ < 1, there is a tendency for the values to vary together in a positive

way. When −1 < ρ < 0 there is a tendency for the values to vary together in a

negative way.

• Recall that

ρ =
Cov(X,Y )

σXσY

,

where the covariance Cov(X,Y ) = E[(X − µX)(Y − µY )].

CORRELATION : The correlation coefficient ρ is a measure of the degree of linear as-

sociation between two random variables. It is very important to understand what cor-

relation does not measure. Investigators sometimes confuse the value of the correlation

coefficient and the slope of an apparent underlying straight line relationship. Actually,

these do not have anything to do with each other.

• The correlation coefficient may be very close to 1, implying an almost perfect

association, but the slope may be very small. Although there is indeed an almost

perfect association, the rate of change of Y values with X values may be very slow.

• The correlation coefficient may be very small, but the apparent “slope” of the

relationship could be very steep. In this situation, it may be that, although the

rate of change of Y values with X values is fast, there is large inherent variation in

the data.

THE BIVARIATE NORMAL DISTRIBUTION : The random vector (X, Y ) is said to

have a bivariate normal distribution if its joint pdf is given by

fX,Y (x, y|µX , µY , σ2
X , σ2

Y , ρ) =





1

2πσXσY

√
1−ρ2

e−Q/2, (x, y) ∈ R2

0, otherwise

where

Q =
1

1− ρ2

[(
x− µX

σX

)2

− 2ρ

(
x− µX

σX

)(
y − µY

σY

)
+

(
y − µY

σY

)2]
.
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FACTS ABOUT THE BIVARIATE NORMAL DISTRIBUTION :

• Marginally, X ∼ N (µX , σ2
X) and Y ∼ N (µY , σ2

Y ).

• If ρ = 0, then X and Y are independent. This is only true in the bivariate normal

setting.

ESTIMATION : Suppose that (X1, Y1), (X2, Y2), ..., (Xn, Yn) is an iid sample from a bi-

variate normal distribution with parameters µX , µY , σ2
X , σ2

Y , and ρ. The likelihood

equation is given by

L ≡ L(µX , µY , σ2
X , σ2

Y , ρ|x, y) =
n∏

i=1

fX,Y (xi, yi|µX , µY , σ2
X , σ2

Y , ρ)

=

(
1

2πσXσY

√
1− ρ2

)n

e−
Pn

i=1 Qi/2,

where

Qi =
1

1− ρ2

[(
xi − µX

σX

)2

− 2ρ

(
xi − µX

σX

)(
yi − µY

σY

)
+

(
yi − µY

σY

)2]
.

Maximum likelihood estimators for the parameters µX , µY , σ2
X , σ2

Y , and ρ are ob-

tained by maximising L with respect to µX , µY , σ2
X , σ2

Y , and ρ. These estimators are

given by µ̂X = X, µ̂Y = Y , σ̂2
X = 1

n

∑n
i=1(Xi −X)2, σ̂2

Y = 1
n

∑n
i=1(Yi − Y )2, and

rXY ≡ r =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
∑n

i=1(Yi − Y )2

=
Sxy√
SxxSyy

,

where Syy =
∑n

i=1(Yi − Y )2 = SS[TOT]. We sometimes call r the sample correlation

coefficient.

FACT : Further intuition is gained from that, using β̂1 = Sxy/Sxx as an estimator for β1,

we have

r2 =
S2

xy/Sxx

Syy

=
SS[R]

SS[TOT]
= R2.

Thus, the square of the sample correlation equals the coefficient of determination for

straight-line regression. This illustrates a nice computational link between regression
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and correlation analyses. The quantity r2 is often called the coefficient of determi-

nation (like R2) in this setting, where correlation analysis is appropriate. However, it

is important to recognise that the interpretation is very different! Here, we are not ac-

knowledging a straight line relationship; rather, we are just modelling the data in terms

of a bivariate normal distribution with correlation ρ. Thus, the former interpretation for

the quantity r2 has no meaning here. Likewise, the idea of correlation really only has

meaning when both variables X and Y are random variables.

HYPOTHESIS TESTS CONCERNING ρ: Suppose that the random vector (X, Y ) has

a bivariate normal distribution with parameters µX , µY , σ2
X , σ2

Y , and ρ. A conditioning

argument can be used to show that

E(Y |X = x) = β0 + β1x,

where β1 = ρ × σY /σX and β0 = µY − β1µX . How is this helpful? Suppose that in an

observational data setting, it is desired to test H0 : ρ = 0 versus H1 : ρ 6= 0, say. Since

σX and σY are both positive, it follows that ρ = 0 ⇔ β1 = 0 and that ρ 6= 0 ⇔ β1 6= 0

(similar relations hold if H1 : ρ < 0 or H1 : ρ > 0). Thus, we can perform a hypothesis

test involving ρ by using the test statistic

t =
β̂1 − 0√
s11MS[E]

=
r
√

n− 2√
1− r2

,

and comparing t to the tn−2 distribution.

REMARK : It may also be of interest to test H0 : ρ = ρ0 versus an alternative where

ρ0 6= 0. In this case, one is forced to appeal to an approximate result based on the Fisher

Z transformation. The method is based on the result that

Wr =
1

2
ln

(
1 + r

1− r

)
∼ AN

[
1

2
ln

(
1 + ρ

1− ρ

)
,

1

n− 3

]
,

when n is large. The test is carried out by computing

Zr =
√

n− 3

[
1

2
ln

(
1 + r

1− r

)
− 1

2
ln

(
1 + ρ0

1− ρ0

)]
,

and comparing Zr to the standard normal distribution.
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WARNING : This procedure is only approximate, even under our bivariate normal

assumption. It is an example of the type of approximation that is often made in difficult

problems, that of approximating the behaviour of a statistic under the condition that

the sample size, n, is large. If n is small, the procedure may be unreliable. Thus, testing

aside, one should be very wary of “over-interpreting” the estimate of ρ when n is small;

after all, one “outlying” or “unusual” observation could be enough to affect the computed

value substantially! It may be very difficult to detect when ρ is significantly different

from zero with a small sample size.

CONFIDENCE INTERVALS : Because r is an estimator of the population parameter ρ,

it would be desirable to report, along with the estimate itself, a confidence interval

for ρ. Since

Wr =
1

2
ln

(
1 + r

1− r

)
∼ AN

[
1

2
ln

(
1 + ρ

1− ρ

)
,

1

n− 3

]
,

when n is large, we can construct an approximate 100(1− α) confidence interval for

Wρ =
1

2
ln

(
1 + ρ

1− ρ

)
;

this interval is given by (W ′
L,W ′

U), where W ′
L and W ′

U are given by

W ′
L = Wr − zα/2

√
1

n− 3

and

W ′
U = Wr + zα/2

√
1

n− 3
,

respectively (verify!). Now, once we have this confidence interval, we can transform

the endpoints W ′
L and W ′

U to obtain the endpoints for the confidence interval for ρ.

Applying the necessary transformation (which as turns out is the hyperbolic tangent

function, tanh), we obtain

(tanh W ′
L, tanh W ′

U) or

[
exp(2W ′

L)− 1

exp(2W ′
L) + 1

,
exp(2W ′

U)− 1

exp(2W ′
U) + 1

]

as an approximate 100(1− α) percent confidence interval for ρ.

Example 4.9 (wingtail.sas). The following data are measurements on wing length (X)

and tail length (Y ) for a sample of n = 12 birds. Both measurements are in centimeters.
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Figure 4.19: Tail length and wing length for twelve birds.

Wing X: 10.4 10.8 11.1 10.2 10.3 10.2 10.7 10.5 10.8 11.2 10.6 11.4

Tail Y : 7.4 7.6 7.9 7.2 7.4 7.1 7.4 7.2 7.8 7.7 7.8 8.3

The scatterplot of the data in Figure 4.19 reveals a positive association. It will be of

interest to determine if the correlation between X and Y , ρ, is significantly different from

zero. Straightforward calculations show that Sxx = 1.717, Syy = 1.347, and Sxy = 1.323.

Thus, our estimate of ρ is given by

r =
1.323√

(1.717)(1.347)
= 0.8704.

We can also compute an approximate confidence interval for ρ using the Fisher Z trans-

formation method we discussed. We first compute

Wr =
1

2
ln

(
1 + 0.8704

1− 0.8704

)
= 1.335.

We have z0.025 = 1.96 and
√

1/(n− 3) = 1/3, so that the confidence interval for Wρ is

given by 1.335 ± 1.96 × (1/3) or (0.681, 1.988). Finally, we transform the interval for ρ
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itself and obtain [
exp(2× 0.681)− 1

exp(2× 0.681) + 1
,
exp(2× 1.988)− 1

exp(2× 1.988) + 1

]
,

or (0.592, 0.963). The interval does not contain zero. Thus, if we were test H0 : ρ = 0

versus H1 : ρ 6= 0, using α = 0.05, we would reject H0 and say that there is an asso-

ciation between wing and tail lengths (under the assumption that our bivariate normal

distribution model is correct).

4.12 Comparison of regression and correlation models

We have identified two appropriate statistical models for thinking about the problem of

assessing association between two variables X and Y . These may be thought of as

• Fixed x: Postulate a model for the mean of the random variable Y as a function

of x (in particular, we focused on the straight line function g(x) = β0 + β1x) and

then estimate the parameters in the model to characterise the relationship.

• Random X: Characterise the linear relationship between X and Y by the

correlation between them (in a bivariate normal probability model) and estimate

the correlation parameter, ρ.

PARALLELS : Arithmetic operations for regression analysis under the first scenario and

correlation analysis under the second are the same! That is, to fit the regression model by

estimating the intercept and slope parameters and to estimate the correlation coefficient,

we use the same arithmetic operations. Of course, as always, the important issue is in

the interpretation of the results.

SUBTLETY : In settings where X is best regarded as a random variable, many inves-

tigators still want to fit regression models treating X as fixed. This is because, although

correlation does describe the “degree of association” between X and Y , it does not char-

acterise the relationship in a way suitable for some purposes. For example, an investigator
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may desire to predict the yield based on observing the average height of plants on a

plot. The correlation coefficient does not allow this. He would rather fit a regression

model, even though X is random. Is this legitimate? If we are careful about the inter-

pretation, it may be. If X and Y are really both observed random variables, and we

fit a regression to characterise the relationship, technically, any subsequent analyses are

regarded as “conditional on the values of X involved.” This means that we essentially

regard X as “fixed,” even though it is not. However, this may be adequate for the pre-

diction problem for our experimenter. Conditional on having seen a particular average

height, he wants to get a “best guess” for yield. He is not saying that he could control

heights and thereby influence yields; only that, given he sees a certain height, he might

be able to say something about the associated yield. This subtlety is an important one,

but important. Inappropriate use of statistical techniques could lead one to erroneous or

irrelevant inferences.

CORRELATION VERSUS CAUSATION : Investigators are often tempted to infer a

causal relationship between X and Y when they fit a regression model or perform

a correlation analysis. However, a significant association between X and Y in either

situation does not necessarily imply a causal relationship!

Example 4.10. A Chicago newspaper reported that “there is a strong correlation be-

tween the numbers of fire fighters (X) at a fire and the amount of damage (Y , measured

in $1000’s) that the fire does.” Data from 20 recent fires in the Chicago area appear in

Figure 4.20. From the plot, there appears to be a strong linear association between X

and Y . Few people, however, would infer that the increase in the number of fire trucks

causes the observed increase in damages! Often, when two variables X and Y have a

strong association, it is because both X and Y are, in fact, each associated with a third

variable, say W . In the example, both X and Y are probably strongly linked to W , the

severity of the fire, so it is understandable that X and Y would increase together.

MORAL: This phenomenon is the basis of the remark “Correlation does not necessarily

imply causation.” An investigator should be aware of the temptation to infer causation
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Figure 4.20: Chicago fire damages ($1000′s) and the number of fire trucks.

in setting up a study, and be on the lookout for “lurking” variables like W above that are

actually the driving force behind observed results. In general, the best way to control the

effects of “lurking” variables is to use a carefully designed experiment. In observational

studies, it is very difficult to make causal statements. Oftentimes, the best we can do is

make statements documenting the observed association, and nothing more.
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5 Matrix Algebra Results for Linear Models

5.1 Basic definitions and results

TERMINOLOGY : A matrix A is a rectangular array of elements; e.g.,

A =


 3 5 4

1 2 8


 .

Elements of A are denoted by aij; e.g., a11 = 3, a12 = 5, ..., a23 = 8. In some instances,

we may write A = (aij). The i refers to the row; the j refers to the column. In general,

the dimensions of A are n (the number of rows) by m (the number of columns). If

we want to emphasise the dimension of A, we may write An×m. If n = m, we call A a

square matrix.

TERMINOLOGY : If A = (aij) is an n×m matrix, the transpose of A, denoted A′, is

the m× n matrix (aji); e.g.,

A′ =




3 1

5 2

4 8


 .

TERMINOLOGY : For any square matrix A, if A′ = A, we say that A is symmetric;

that is, aij = aji for all values of i and j.

TERMINOLOGY : A vector is a matrix consisting of one column or one row. A column

vector is denoted by an×1, and a row vector is denoted by a1×m. We will assume that

all vectors written as a, b, c, etc., are column vectors. All vectors written as a′, b′, c′,

etc., are row vectors.

a =




a1

a2

...

an




a′ =
(

a1 a2 · · · an

)
.

TERMINOLOGY : Two vectors a and b are said to be orthogonal if a′b = 0.
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MATRIX MULTIPLICATION : If An×m and Bm×p, then AB is an n× p matrix.

RESULT : If the matrices A and B are of conformable dimensions,

(a) (A′)′ = A

(b) (AB)′ = B′A′

(c) (A + B)′ = A′ + B′.

(d) A′A and AA′ are symmetric.

NOTATION : The determinant of an n× n matrix A is denoted by |A| or det(A).

SPECIAL CASE : The determinant of the 2× 2 matrix

A =


 a b

c d




is given by |A| = ad− bc.

RESULT : If the matrices A and B are of conformable dimensions,

(a) for any square matrix A, |A′| = |A|.

(b) for any n× n upper (lower) triangular matrix (this includes diagonal matrices),

|A| =
n∏

i=1

aii.

TERMINOLOGY : A popular matrix in linear models is the n × n identity matrix I

given by

I = In =




1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1




;

that is, aij = 1 for i = j, and aij = 0 when i 6= j.
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TERMINOLOGY : Another popular matrix is the n× n matrix of ones J given by

J = Jn =




1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1




;

that is, aij = 1 for all i and j. Note that J = 11′, where 1 is an n× 1 vector of 1s.

TERMINOLOGY : The n × n matrix where aij = 0 for all i and j, is called the zero

matrix, and is denoted 0.

TERMINOLOGY : If A is an n × n matrix, and there exists a matrix C such that

AC = CA = I, then A is said to be nonsingular, and C is called the inverse of A,

henceforth denoted as A−1. If A is nonsingular, the inverse matrix A−1 is unique. If A

is not nonsingular, we say that A is singular, in which case A−1 does not exist.

SPECIAL CASE : The inverse of the 2× 2 matrix

A =


 a b

c d


 is given by A−1 =

1

ad− bc


 d −b

−c a


 .

SPECIAL CASE : The inverse of the n× n diagonal matrix

A =




a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann




is given by A−1 =




a−1
11 0 · · · 0

0 a−1
22 · · · 0

...
...

. . .
...

0 0 · · · a−1
nn




.

RESULT : If A and B are n× n matrices,

(a) A is nonsingular if and only if |A| 6= 0.

(b) then if A and B are nonsingular, (AB)−1 = B−1A−1.

(c) then if A is nonsingular, (A′)−1 = (A−1)′.

PAGE 116



CHAPTER 5 STAT 3601

TERMINOLOGY : An n× n matrix A is said to be idempotent if A2 = A.

TERMINOLOGY : If A is an n× n matrix, the trace of A is defined as follows:

tr(A) =
n∑

i=1

aii;

that is, tr(A) is the sum of the diagonal elements of A. Also, it follows that for any

conformable matrices A and B, tr(aA + bB) = atr(A) + btr(B), for any constants a

and b, and tr(AB) = tr(BA).

5.2 Linear independence and rank

TERMINOLOGY : The n× 1 vectors a1, a2, ..., am are said to be linearly dependent

if and only if there exist scalars c1, c2, ..., cm such that
m∑

i=1

ciai = 0

and at least one of the ci’s is not zero. On the other hand, if
m∑

i=1

ciai = 0 =⇒ c1 = c2 = · · · = cm = 0,

then we say that a1, a2, ..., am are linearly independent.

RESULT : Suppose that a1, a2, ..., am is a set of n× 1 vectors. Then,

(a) the vectors are linearly dependent if and only if it is possible to express at least one

vector as a linear combination of the others.

(b) the vectors are linearly independent if and only if it is not possible to express one

vector as a linear combination of the others.

TERMINOLOGY : The rank of any matrix A is defined as

r(A) = number of linearly independent columns of A

= number of linearly independent rows of A.
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RESULT : The number of linearly independent rows of any matrix is equal to the number

of linearly independent columns.

TERMINOLOGY : Suppose that A is an n × p matrix. Then r(A) ≤ min{n, p}. If

r(A) = min{n, p}, then A is said to have full rank. If r(A) = n, we say that A is of

full row rank. If r(A) = p, we say that A is of full column rank. If r(A) < min{n, p},
we say that A is rank deficient or less than full rank.

REALISATION : Since the maximum possible rank of an n × p matrix is the minimum

of n and p, for any rectangular matrix, either the rows or columns (or both) must be

linearly dependent!

Example 5.1. The rank of

A =


 1 −2 1

5 2 17




is 2 because the two rows are linearly independent (neither is a multiple of the other).

Thus, A has full row rank. Furthermore, by the definition of rank, the number of linearly

independent columns is also 2. Therefore, the columns are linearly dependent; that is,

there exist constants c1, c2, and c3 such that

c1


 1

5


 + c2


 −2

2


 + c3


 1

17


 =


 0

0


 .

Taking c1 = 3, c2 = 1 and c3 = −1 are examples of such constants; that is, a3, the third

of column of A, is equal to 3a1 + a2, where a1 and a2 are the first and second columns

of A, respectively.

CONNECTION : For any n× n matrix A, the following statements are equivalent:

r(A) = n ⇐⇒ A−1 exists ⇐⇒ |A| 6= 0.

IMPORTANT FACT : For any matrix A, r(A′A) = r(A).

USEFUL FACT : For any n× n idempotent matrix A, r(A) = tr(A).
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5.3 Generalised inverses and systems of equations

TERMINOLOGY : A generalised inverse of a matrix A is any matrix G which satisfies

AGA = A. We usually denote the generalised inverse of A by A−. Although any matrix

A has a generalised inverse, we’ll pay special attention to the case when A is symmetric.

REMARK : If A is nonsingular, then A− = A−1.

SYSTEMS OF EQUATIONS : Consider the (linear) system of equations

Ap×pxp×1 = cp×1.

Of course, if r(A) = p, then A−1 exists, and x = A−1c; i.e., we get a unique solution. If

r(A) < p, however, A−1 does not exist uniquely. In this case, the system Ax = c might

have (a) no solution, (b) finitely many solutions, or (c) infinitely many solutions!

TERMINOLOGY : A linear system Ax = c is said to be consistent if it has a solution;

i.e., there exists an x∗ such that Ax∗ = c.

IMPORTANT FACT : If Ax = c is a consistent system, then x = A−c is a solution.

Proof. Suppose that Ax = c is consistent; that is, there exists an x∗ such that Ax∗ = c.

It follows that x = A−c is a solution since AA−c = AA−Ax∗ = Ax∗ = c. ¤

COMPUTING GENERALISED INVERSES : Consider the following algorithm for find-

ing a generalised inverse A− for any n× p matrix of rank r.

1. Find any r × r nonsingular submatrix C. It is not necessary that the elements of

C occupy adjacent rows and columns in A.

2. Find C−1 and (C−1)′.

3. Replace the elements of C by the elements of (C−1)′.

4. Replace all other elements of A by zeros.

5. Transpose the resulting matrix.
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5.4 Column and row spaces

TERMINOLOGY : For the matrix An×m = [a1 a2 · · · am], where aj is n×1, the column

space of A,

C(A) =

{
v ∈ Rn : v =

m∑
j=1

cjaj; cj ∈ R
}

= {v ∈ Rn : v = Ac; c ∈ Rm},

is the set of all n× 1 vectors spanned by the columns of A; that is, C(A) is the set of all

vectors that can be written as a linear combination of the columns of A.

TERMINOLOGY : Similarly, the row space of A, denotedR(A), is the set of all vectors

that can be written as a linear combination of the rows of A.

RESULT : For any matrix A,

(a) C(A′A) = C(A) and R(A′A) = R(A)

(b) R(A′) = C(A) and C(A′) = R(A).

5.5 Quadratic forms

TERMINOLOGY : Let x = (x1, x2, ..., xn)′ denote an n× 1 vector, and suppose that A

is an n× n symmetric matrix. A quadratic form is a function f : Rn → R of the form

f(x) =
n∑

i=1

n∑
j=1

aijxixj = x′Ax.

The matrix A is sometimes called the matrix of the quadratic form. Note that this

sum will involve both squared terms x2
i and the cross-product terms xixj. With x 6= 0,

• if x′Ax ≥ 0, the quadratic form and the matrix A are said to be nonnegative

definite.

• if x′Ax > 0, the quadratic form and the matrix A are said to be positive definite.
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5.6 Eigenvalues and eigenvectors

TERMINOLOGY : Let A be an n × n matrix. The characteristic equation of A is

given by

|A− λIn| = 0.

This equation in λ has exactly n roots λ1, λ2, ..., λn which are called eigenvalues. These

values are not necessarily distinct or even real. The solutions to the characteristic equa-

tion are identical to the solutions to the equation

Ax = λx,

for some x 6= 0. An x corresponding to λi, denoted as xi is called an eigenvector

associated with λi.

Example 5.2. Let

A =


 3 0

8 −1


 .

It follows that

A− λI2 =


 3 0

8 −1


−


 λ 0

0 λ


 =


 3− λ 0

8 −1− λ


 ,

which has determinant equal to (3 − λ)(−1 − λ). Thus, the eigenvalues are 3 and −1.

The eigenvector associated with λ = 3 is xi = (1, 2)′ since


 3 0

8 −1





 1

2


 = 3


 1

2


 =


 3

6


 .

RESULT : For any symmetric matrix A,

(a) A is positive definite ⇔ all eigenvalues of A are positive ⇔ |A| > 0

(b) A is nonnegative definite ⇔ all eigenvalues of A are nonnegative ⇔ |A| ≥ 0.

(c) all of A’s eigenvalues are real.
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5.7 Means and variances of random vectors

TERMINOLOGY : Suppose that Z1, Z2, ..., Zn are random variables. We call

Z =




Z1

Z2

...

Zn




a random vector. The (multivariate) pdf of Z is denoted by fZ(z). It describes

mathematically how Z1, Z2, ..., Zn are distributed jointly (and, hence, is sometimes called

a joint distribution). If Z1, Z2, ..., Zn are iid from fZ(z), the joint pdf of Z is given by

fZ(z) =
n∏

i=1

fZ(zi).

THE MEAN AND VARIANCE OF A RANDOM VECTOR: Suppose that E(Zi) = µi,

V (Zi) = σ2
i , for i = 1, 2, ..., n, and Cov(Zi, Zj) = σij for i 6= j. We define the mean of a

random vector to be

E(Z) =




µ1

µ2

...

µn




= µ

and the variance of a random vector to be the n× n matrix

V (Z) =




σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n




= V .

We may also refer to V as the variance-covariance matrix of Z, because it contains

the variances σ2
1, σ

2
2, ..., σ

2
n on the diagonal and the

(
n
2

)
covariance terms Cov(Zi, Zj), for

i < j. Since Cov(Zi, Zj) = Cov(Zj, Zi), it follows that the variance-covariance matrix V

is symmetric.
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THE COVARIANCE OF TWO RANDOM VECTORS : Suppose that Y n×1 and Zm×1

are random vectors. The covariance between Y and Z is given by

Cov(Y ,Z) =




Cov(Y1, Z1) Cov(Y1, Z2) · · · Cov(Y1, Zm)

Cov(Y2, Z1) Cov(Y2, Z2) · · · Cov(Y2, Zm)
...

...
. . .

...

Cov(Yn, Z1) Cov(Yn, Z2) · · · Cov(Yn, Zm)




n×m

.

MEAN AND VARIANCE OF LINEAR FUNCTIONS OF A RANDOM VECTOR: Sup-

pose that Z, Z1 and Z2 are all n× 1 random vectors and that am×1, Am×n, and Bm×n

are nonrandom (i.e., they contain only non-varying constants). The following facts are

easily shown:

1. E(a + BZ) = a + BE(Z) = a + Bµ

2. V (a + BZ) = BV (Z)B′ = BV B′

3. Cov(AZ1, BZ2) = ACov(Z1,Z2)B
′.

MEAN OF A QUADRATIC FORM : Let Y be an n-dimensional random vector with

mean µ and variance-covariance matrix V . Then, Y ′AY is a quadratic form and

E(Y ′AY ) = µ′Aµ + tr(AV ).

5.8 The multivariate normal distribution

We have talked about the (univariate) normal distribution for a random variable Y and

the bivariate normal distribution for a two-dimensional random vector (Y1, Y2)
′. It turns

out that we can quite naturally extend the notion of joint normality of Y = (Y1, Y2, ..., Yn)′

to n dimensions.

TERMINOLOGY : The random vector Y = (Y1, Y2, ..., Yn)′ is said to have a multivari-

ate normal distribution with mean µ and variance-covariance matrix V if its (joint)
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pdf is given by

fY (y) =
1

(2π)n/2|V |1/2
exp

{−(y − µ)′V −1(y − µ)
}

,

for all y ∈ Rn. Shorthand notation for this statement is Y ∼ Nn(µ, V ).

FACT : If Y = (Y1, Y2, ..., Yn)′ ∼ Nn(µ,V ), then, marginally, each Yi ∼ N (µi, σ
2
i ).

FACT : Suppose that Y ∼ Nn(µ,V ) and that am×1 and Bm×n are nonrandom. Then,

a + BY ∼ Nm(a + Bµ,BV B′). Of course, if m = 1, then am×1 is a scalar, Bm×n is a

row vector, and a + BY has a univariate normal distribution.

Example 5.3. With Y = (Y1, Y2, Y3)
′, suppose that

Y ∼ N3








4

6

10


 ,




8 5 0

5 12 4

0 4 9








.

(a) Find the distribution of X1 = Y1 − Y2 + Y3.

(b) Let X2 = Y1 − 3Y2 + 2Y3. Find the joint distribution of X1 and X2.

(c) Find ρX1,X2 , the correlation between X1 and X2.

Solution. (a) Writing

X1 =
(

1 −1 1
)




Y1

Y2

Y3


 ,

we identify a = 0 and B1×3 = (1,−1, 1). Straightforward calculations show that

Bµ =
(

1 −1 1
)




4

6

10


 = 8

and

BV B′ =
(

1 −1 1
)




8 5 0

5 12 4

0 4 9







1

−1

1


 = 11.

Thus, X1 ∼ N (8, 11).
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(b) Writing

X =


 X1

X2


 =


 1 −1 1

1 −3 2







Y1

Y2

Y3


 ,

we identify a = 0 and

B =


 1 −1 1

1 −3 2


 .

Straightforward calculations show that

Bµ =


 1 −1 1

1 −3 2







4

6

10


 =


 8

6




and

BV B′ =


 1 −1 1

1 −3 2







8 5 0

5 12 4

0 4 9







1 1

−1 −3

1 2


 =


 11 22

22 74


 .

Thus,

X =


 X1

X2


 ∼ N2






 8

6


 ,


 11 22

22 74






 .

(c) The correlation between X1 and X2 is given by

ρX1,X2 =
σX1,X2

σX1σX2

=
22√

(11)(74)
≈ 0.771.

NOTE : To do the BV B′ calculation, I used the Maple commands

> with(linalg);

> B:=array(1..2,1..3,[[1,-1,1],[1,-3,2]]);

> V:=array(1..3,1..3,[[8,5,0],[5,12,4],[0,4,9]]);

> variance:=multiply(B,V,transpose(B));

NOTE : Maple is great for matrix calculations!
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6 Introduction to Multiple Regression Models

Complimentary reading from Rao: Chapter 11 (§ 11.1-11.6).

6.1 Introduction

In Chapter 4, we considered the simple linear regression model Yi = β0 + β1xi + εi, for

i = 1, 2, ..., n, where εi ∼ iid N (0, σ2). We talked about three main issues: (a) least-

squares estimation and inference for β0 and β1, (b) estimating mean values of Y and

predicting future values of Y , and (c) model diagnostics. While the straight-line model

serves as an adequate description for many situations, more often than not, researchers

engaged in model building consider more than just one predictor variable x. In fact, it

is often the case that the researcher has a set of p candidate predictor variables, say,

x1, x2, ..., xp, and desires to model Y as a function of one or more of these p variables. To

accommodate this situation, we must extend our linear regression model to handle more

than one predictor variable.

Example 6.1. The taste of matured cheese is related to the concentration of several

chemicals in the final product. In a study of cheddar cheese from the LaTrobe Valley of

Victoria, Australia, samples of cheese were analysed for their chemical composition and

were subjected to taste tests. Overall taste scores were obtained by combining the scores

from several tasters. Data were collected on the following variables:

Y = taste test score (TASTE)

x1 = concentration of acetic acid (ACETIC)

x2 = concentration of hydrogen sulfide (H2S)

x3 = concentration of lactic acid (LACTIC).

Variables ACETIC and H2S are both on the (natural) log scale. The variable LACTIC has

not been transformed. Table 6.14 contains concentrations of the various chemicals in

n = 30 specimens of mature cheddar cheese and the observed taste score.
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Table 6.14: Cheese data.

TASTE ACETIC H2S LACTIC TASTE ACETIC H2S LACTIC

12.3 4.543 3.135 0.86 40.9 6.365 9.588 1.74

20.9 5.159 5.043 1.53 15.9 4.787 3.912 1.16

39.0 5.366 5.438 1.57 6.4 5.412 4.700 1.49

47.9 5.759 7.496 1.81 18.0 5.247 6.174 1.63

5.6 4.663 3.807 0.99 38.9 5.438 9.064 1.99

25.9 5.697 7.601 1.09 14.0 4.564 4.949 1.15

37.3 5.892 8.726 1.29 15.2 5.298 5.220 1.33

21.9 6.078 7.966 1.78 32.0 5.455 9.242 1.44

18.1 4.898 3.850 1.29 56.7 5.855 10.20 2.01

21.0 5.242 4.174 1.58 16.8 5.366 3.664 1.31

34.9 5.740 6.142 1.68 11.6 6.043 3.219 1.46

57.2 6.446 7.908 1.90 26.5 6.458 6.962 1.72

0.7 4.477 2.996 1.06 0.7 5.328 3.912 1.25

25.9 5.236 4.942 1.30 13.4 5.802 6.685 1.08

54.9 6.151 6.752 1.52 5.5 6.176 4.787 1.25

Suppose that the researchers postulate that each of the three chemical composition co-

variates x1, x2, and x3 are important in describing the taste. In this case, they might

initially consider the following regression model

Yi = β0 + β1xi1 + β2xi2 + β3xi3︸ ︷︷ ︸
g(x1,x2,x3)

+εi,

for i = 1, 2, ..., 30. Are there other predictor variables that influence taste not considered

here? Alternatively, what if not all of x1, x2, and x3 are needed in the model? After

all, it may be that one or more of x1, x2, and x3 are not helpful in describing taste. For

example, if the acetic acid concentration (x1) is not helpful in describing taste, then we

might consider a smaller model which excludes it; i.e.,

Yi = β0 + β2xi2 + β3xi3︸ ︷︷ ︸
g(x2,x3)

+εi,

for i = 1, 2, ..., 30. The goal of any regression modelling problem should be to identify

each of the important predictors, and then find the smallest model that does the best job.
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MULTIPLE REGRESSION SETTING : Consider an experiment in which n observations

are collected on the response variable Y and p predictor variables x1, x2, ..., xp. Schemat-

ically, we can envision data from such an experiment as in Table 6.15.

Table 6.15: Schematic representation of data collected in a multiple regression setting.

Individual Y x1 x2 · · · xp

1 Y1 x11 x12 · · · x1p

2 Y2 x21 x22 · · · x2p

...
...

...
...

...
...

n Yn xn1 xn2 · · · xnp

To describe Y as a function of the p independent variables x1, x2, ..., xp, we posit the

multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip︸ ︷︷ ︸
g(x1,x2,...,xp)

+εi,

for i = 1, 2, ..., n, where n > p + 1 and εi ∼ iid N (0, σ2). The values β0, β1, ..., βp, as

before, are still called regression coefficients, and, since we are talking about regression

models, we assume that x1, x2, ..., xp are all fixed, measured without error. Here, the

random errors εi are still assumed to be independent and have a normal distribution with

mean zero and a common variance σ2. Just as before in the straight-line case, our main

goals in regression analysis will be to

• estimate the regression parameters, β0, β1, ..., βp,

• diagnose the fit (i.e., perform model diagnostics), and

• estimate mean responses and make predictions about future values.

PREVIEW : To estimate the regression parameters β0, β1, ..., βp, we will still use the

method of least squares. Simple computing formulae for parameter estimators are no

longer available (this is the price to pay for making the leap to a multiple-regression

setting!). We can, however, find closed-form solutions in terms of matrices and vectors.
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6.2 Multiple linear regression models using matrices

Repeatedly writing the multiple linear regression model as

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi,

for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2), can get tiring. It turns out that we can more

succinctly express the model, and, hence, greatly streamline our presentation, with the

use of matrices and vectors. In particular, defining

Y n×1 =




Y1

Y2

...

Yn




, Xn×(p+1) =




1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...
...

...
. . .

...

1 xn1 xn2 · · · xnp




, β(p+1)×1 =




β0

β1

β2

...

βp




,

and

εn×1 =




ε1

ε2

...

εn




,

the model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi,

for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2), can be equivalently expressed as

Y = Xβ + ε,

where ε ∼ Nn(0, σ2In).

NOTE : The matrix X is sometimes called the design matrix. It contains all of the

predictor variable information and is assumed to be fixed (i.e., not random). The vector β

contains all the true regression coefficients (which are also assumed to be fixed quantities).

The only random quantities in the model are ε and Y . Since E(ε) = 0 and V (ε) = σ2In,

it follows that E(Y ) = Xβ and that V (Y ) = σ2In. Since ε has a normal distribution,
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so does Y ; thus, Y ∼ Nn(Xβ, σ2In). Summarising, Y has a multivariate normal

distribution with mean

E(Y ) = Xβ =




β0 + β1x11 + β2x12 + · · ·+ βpx1p

β0 + β1x21 + β2x22 + · · ·+ βpx2p

...

β0 + β1xn1 + β2xn2 + · · ·+ βpxnp




and variance

V (Y ) = σ2In =




σ2 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σ2




.

ESTIMATING β USING LEAST SQUARES : The notion of least-squares estimation

here is the same as it was in the straight-line model. In a multiple-regression setting, we

want to find the values of β0, β1, ..., βp that minimise the sum or squared deviations

SSE(β0, β1, ..., βp) =
n∑

i=1

(Yi − β0 − β1xi1 − β2xi2 − · · · − βpxip)
2 ,

or, in matrix notation, the value of β that minimises

SSE(β) = (Y −Xβ)′(Y −Xβ).

Because (Y −Xβ)′(Y −Xβ) = (Y −Xβ)′In(Y −Xβ) is a quadratic form; i.e., it is just

a scalar function of the p+1 elements of β, it is possible to use calculus to determine the

values of the p + 1 elements that minimise it. Formally, one would take the p + 1 partial

derivatives, with respect to each of β0, β1, ..., βp, respectively, and set these expressions

equal to zero; i.e.,

∂SSE(β)

∂β
=




∂SSE
∂β0

∂SSE
∂β1

...

∂SSE
∂βp




set
=




0

0
...

0




.

These are called the normal equations. These rather intimidating expressions, in non-

matrix form, appear on p. 485 (Rao). Solving the normal equations for β0, β1, ..., βp gives

the least squares estimators β̂0, β̂1, ..., β̂p.
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NORMAL EQUATIONS : Using the calculus of matrices (see Searle, 1982) makes this

much easier; in particular, we can show the normal equations can be expressed as

−2X ′Y + 2X ′Xβ = 0 or, equivalently X ′Xβ = X ′Y .

Provided that X ′X is full rank, the (unique) value of β that solves this minimisation

problem is given by

β̂ = (X ′X)−1X ′Y .

This is called the least-squares estimator of β. Each entry in the vector is the least-

squares estimator of the corresponding value of βi, for i = 0, 1, ..., p; i.e.,

β̂ =




β̂0

β̂1

β̂2

...

β̂p




.

NOTE : For the least-squares estimator β̂ to be unique, we need X to be of full column

rank; i.e., r(X) = p+1. That is, there are no linear dependencies among the columns of

X. If r(X) < p + 1, then, since r(X) = r(X ′X), X ′X does not have a unique inverse.

In this case, the normal equations can not be solved uniquely.

WORKING ASSUMPTION : To avoid the more technical details of working with non

full rank matrices (for now) we will assume, unless otherwise stated, that X is full rank.

In this case, we know that (X ′X)−1 exists uniquely.

NOTE : Computing β̂ for general p is not feasible by hand, of course, particularly nasty is

the inversion of X ′X when p is large. Software for multiple regression analysis includes

routines for inverting a matrix of any dimension; thus, estimation of β for a general

multiple regression model is best carried out in this fashion.

RAO’S NOTATION : For some reason, Rao calls the (X ′X)−1 matrix S. I will not use

this notation.
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ERROR SUM OF SQUARES : We define the error sum of squares by

SS[E] ≡ SSE(β̂) = (Y −Xβ̂)′(Y −Xβ̂) = (Y − Ŷ )′(Y − Ŷ ) = e′e.

The vector Ŷ ≡ Xβ̂ contains the n fitted values. The vector e ≡ Y − Ŷ = Y −Xβ̂

contains the n least-squares residuals.

ESTIMATION OF σ2: An unbiased estimator of σ2 is given by

σ̂2 = MS[E] ≡ SS[E]

n− p− 1
=

(Y −Xβ̂)′(Y −Xβ̂)

n− p− 1
.

Proof. It may be demonstrated (verify!) that

SS[E] = (Y −Xβ̂)′(Y −Xβ̂) = Y ′(In −M )Y ,

where M = X(X ′X)−1X ′. Since E(Y ) = Xβ and V (Y ) = σ2In, it follows that

E[Y ′(In −M)Y ] = (Xβ)′(In −M)Xβ︸ ︷︷ ︸
= 0

+tr[(In −M )σ2In]

(you might recall means of quadratic forms from Chapter 5). However, it is easy to see

that MX = X, in which case the first term is zero. As for the second term, note that,

tr[(In −M )σ2In] = σ2{tr(In)− tr(M )}
= σ2{n− tr[X(X ′X)−1X ′]}

Now, since tr(AB) = tr(BA) for any conformable matrices A and B, we can write the

last expression as

σ2{n− tr[X(X ′X)−1X ′]} = σ2{n− tr[(X ′X)−1X ′X]}
= σ2{n− tr(Ip+1)}
= σ2(n− p− 1).

We have shown that E(SS[E]) = σ2(n− p− 1). Thus,

E(MS[E]) = E

(
SS[E]

n− p− 1

)
= σ2,

showing that, indeed, MS[E] is an unbiased estimator of σ2. ¤
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Example 6.2 (cheese.sas). With the cheese data in Example 6.1, consider the full

model

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi,

for i = 1, 2, ..., 30, or in matrix notation Y = Xβ + ε. From Table 6.14, we have

y30×1 =




12.3

20.9

39.0
...

5.5




, and X30×4 =




1 4.543 3.135 0.86

1 5.159 5.043 1.53

1 5.366 5.438 1.57
...

...
...

...

1 6.176 4.787 1.25




.

Our parameter vector (to be estimated) is

β4×1 =




β0

β1

β2

β3




.

We compute

X ′X =




30 164.941 178.254 43.260

164.941 916.302 1001.806 240.879

178.254 1001.806 1190.343 269.113

43.26 240.879 269.113 65.052




,

(X ′X)−1 =




3.795 −0.760 0.087 −0.071

−0.760 0.194 −0.020 −0.128

0.087 −0.020 0.015 −0.046

−0.071 −0.128 −0.046 0.726




,

and

X ′y =




736.000

4194.442

5130.932

1162.065




.
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Thus, the least squares estimate of β for these data is given by

β̂ = (X ′X)−1X ′y

=




3.795 −0.760 0.087 −0.071

−0.760 0.194 −0.020 −0.128

0.087 −0.020 0.015 −0.046

−0.071 −0.128 −0.046 0.726







736.000

4194.442

5130.932

1162.065




=




−28.877

0.328

3.912

19.670




=




β̂0

β̂1

β̂2

β̂3




.

Our least-squares regression equation becomes

Ŷi = −28.877 + 0.328xi1 + 3.912xi2 + 19.670xi3,

or, in terms of the variable names,

T̂ASTEi = −28.877 + 0.328ACETICi + 3.912H2Si + 19.670LACTICi.

An unbiased estimate of the error variance σ2 is given by

σ̂2 = MS[E] =
(y −Xβ̂)′(y −Xβ̂)

26
≈ 102.630.

6.3 Sampling distributions

Consider our multiple linear regression model Y = Xβ + ε, where ε ∼ Nn(0, σ2In). We

now investigate the sampling distribution of the least-squares estimator β̂. This will

help us construct confidence intervals for individual elements of β and perform hypothesis

tests which compare different regression models.

SAMPLING DISTRIBUTION OF β̂: Recall that the least-squares estimator for β is

given by

β̂ = (X ′X)−1X ′Y .
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The mean of β̂ is given by

E(β̂) = E[(X ′X)−1X ′Y ] = (X ′X)−1X ′E(Y ) = (X ′X)−1X ′Xβ = β.

Thus, β̂ is an unbiased estimator of β. The variance of β̂ is given by

V (β̂) = V [(X ′X)−1X ′Y ]

= (X ′X)−1X ′V (Y )[(X ′X)−1X ′]′

= (X ′X)−1X ′σ2InX(X ′X)−1

= σ2(X ′X)−1.

Now (X ′X)−1 is a (p + 1)× (p + 1) matrix. Thus, V (β̂) is a (p + 1)× (p + 1) matrix of

the true variances and covariances; it has the following structure:

V (β̂) =




V (β̂0) Cov(β̂0, β̂1) Cov(β̂0, β̂2) · · · Cov(β̂0, β̂p)

V (β̂1) Cov(β̂1, β̂2) · · · Cov(β̂1, β̂p)

V (β̂2)
... Cov(β̂2, β̂p)

. . .
...

V (β̂p)




(p+1)×(p+1)

.

Notice that I only gave the upper triangle of the V (β̂) matrix since it is symmetric. Of

course, rarely will anyone ever tell us the value of σ2, so σ2(X ′X)−1 really is not that

useful. For practical use, we must estimate σ2 with its unbiased estimate MS[E]. Thus,

the estimated variance-covariance matrix is given by V̂ (β̂) = MS[E](X ′X)−1. This

is a (p + 1) × (p + 1) matrix of the estimated variances and covariances; it has the

following structure:

V̂ (β̂) =




V̂ (β̂0)
̂

Cov(β̂0, β̂1)
̂

Cov(β̂0, β̂2) · · · ̂
Cov(β̂0, β̂p)

V̂ (β̂1)
̂

Cov(β̂1, β̂2) · · · ̂
Cov(β̂1, β̂p)

V̂ (β̂2)
...

̂
Cov(β̂2, β̂p)

. . .
...

V̂ (β̂p)




(p+1)×(p+1)

Usually, computing packages will give us this estimated variance-covariance matrix. This

matrix will be very helpful when we want to get confidence intervals for E(Y |x0) or

prediction intervals for a new Y0 (coming up!).
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Example 6.3 (cheese.sas). With the cheese data in Example 6.1, consider the full

model Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi, for i = 1, 2, ..., 30, or in matrix notation

Y = Xβ + ε. The estimated variance-covariance matrix of β̂ is given by

V̂ (β̂) = MS[E](X ′X)−1 =




398.480 −77.977 8.960 −7.333

−77.977 19.889 −2.089 −13.148

8.960 −2.089 1.558 −4.670

−7.333 −13.148 −4.670 74.461




.

NORMALITY : Since β̂ = (X ′X)−1X ′Y is just a linear combination of Y1, Y2, ..., Yn

(all of which are normally distributed under our model assumptions), it follows that β̂ is

normally distributed as well. More precisely, it follows a (p+1)-dimensional multivariate

normal distribution. Summarising,

β̂ ∼ Np+1[β, σ2(X ′X)−1].

IMPLICATIONS : In our multiple linear regression setting, we would like to do many

of the things that we did in the simple-linear case; e.g., obtain confidence intervals for

regression coefficients, prediction intervals, etc. The following facts provide the basis for

many of these objectives and are direct consequences of our previous discussion:

(1) E(β̂j) = βj, for j = 0, 1, ..., p; that is, the least-squares estimators are unbiased.

(2) V (β̂j) = sjjσ
2, where

sjj = (X ′X)−1
j,j ,

for j = 0, 1, ..., p. The value (X ′X)−1
j,j represents the jth diagonal element of the

(X ′X)−1 matrix. An estimate of V (β̂j) is given by V̂ (β̂j) = sjjMS[E].

(3) Cov(β̂j, β̂j′) = sjj′σ
2, where

sjj′ = (X ′X)−1
j,j′ ,

for j 6= j′. The value (X ′X)−1
j,j′ is the entry in the jth row and j′th column of the

(X ′X)−1 matrix. An estimate of Cov(β̂j, β̂j′) is given by
̂

Cov(β̂j, β̂j′) = sjj′MS[E].

(4) Marginally, β̂j ∼ N (βj, sjjσ
2), for j = 0, 1, ..., p.
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SAMPLING DISTRIBUTION OF MS[E]: Under our model assumptions, the random

variable
SS[E]

σ2
=

(n− p− 1)MS[E]

σ2
∼ χ2

n−p−1.

This fact is also useful in deriving many of the inferential procedures that we will discuss.

6.4 Inference for parameters in multiple regression

INFERENCE FOR INDIVIDUAL REGRESSION PARAMETERS : Consider our mul-

tiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi,

for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2). Writing a confidence interval or performing a

hypothesis test for single regression parameter βj can help us assess the importance of

using the independent variable xj in the full model.

CONFIDENCE INTERVALS : Since β̂j ∼ N (βj, sjjσ
2), where sjj = (X ′X)−1

j,j , for j =

0, 1, 2, ..., p, it follows that

Z =
β̂j − βj√

sjjσ2
∼ N (0, 1)

and that

t =
β̂j − βj√
sjjMS[E]

∼ tn−p−1,

Confidence intervals and hypothesis tests are based on this pivotal quantity. Specifically,

a 100(1− α) percent confidence interval for βi is given by

β̂j ± tn−p−1,α/2

√
sjjMS[E].

HYPOTHESIS TESTS : To test H0 : βj = βj,0 versus a one or two-sided alternative, we

use the test statistic

t =
β̂j − βj,0√
sjjMS[E]

.

The rejection region is located in the appropriate tail(s) on the tn−p−1 reference distrib-

ution. P values are the appropriate areas under the tn−p−1 distribution.
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NOTE : To assess whether or not xj is useful in describing Y , with the inclusion of the

other predictor variables in the model, we can test

H0 : βj = 0

versus

H1 : βj 6= 0.

It is important to recognise that tests of this form are “conditional” on there being the

other predictors present in the model.

Example 6.4 (cheese.sas). With the cheese data in Example 6.1, consider the full

model Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi, for i = 1, 2, ..., 30. To assess the importance

of the hydrogen sulfide concentration and its influence on taste, we can test H0 : β2 = 0

versus H1 : β2 6= 0. With β̂2 = 3.912, s22 = 0.015, and MS[E] = 102.630, our test statistic

becomes

t =
β̂2 − 0√
s22MS[E]

=
3.912√

0.015× 102.630
= 3.134,

which is larger than t26,0.025 = 2.056. Thus, at the α = 0.05 significance level, we have

significant evidence that the hydrogen sulfide concentration, after adjusting for the effects

of acetic and lactic concentrations, is important in describing taste.

SIMULTANEOUS CONFIDENCE REGIONS FOR β: The goal may be to find a region

that contains β with probability 1−α. This is called a 100(1−α) percent confidence

region for β. Consider two different regions:

1. An exact elliptical region
{

β :
(β̂ − β)′X ′X(β̂ − β)

(p + 1)MS[E]
≤ Fp,n−p−1,α

}

2. A rectangular region (equivalent to the intersection of p + 1 intervals) using a

Bonferroni-type correction; more precisely, β̂i ± tn−p−1,α/2(p+1)

√
siiMS[E], for i =

0, 1, 2, ..., p. This collection of intervals constitutes a joint confidence region whose

probability of joint coverage is at least 1− α.
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6.5 Simple linear regression in matrix notation

The simple linear regression model Yi = β0 + β1xi + εi, for i = 1, 2, ..., n, is just a special

case of the multiple linear regression model when p = 1. Thus, if we define

Y n×1 =




Y1

Y2

...

Yn




, Xn×2 =




1 x1

1 x2

...
...

1 xn




, β2×1 =


 β0

β1


 ,

and

εn×1 =




ε1

ε2

...

εn




.

Then, the model Yi = β0 + β1xi + εi, for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2), can also

be equivalently expressed as

Y = Xβ + ε,

where ε ∼ Nn(0, σ2In). Now, straightforward calculations (verify!) show that

X ′X =


 n

∑
i xi

∑
i xi

∑
i x

2
i


 and (X ′X)−1 =




1
n

+ x2

Sxx
− x

Sxx

− x
Sxx

1
Sxx

.




Thus, it can also be shown (verify!) that

X ′Y =




∑
i Yi

∑
i xiYi


 and β̂ = (X ′X)−1X ′Y =


 Y − β̂1x

Sxy

Sxx


 =


 β̂0

β̂1


 .

NOTE : Variances and covariances for β̂0 and β̂1 found in Chapter 4 are identical to

those given by V (β̂) = σ2(X ′X)−1. We can also compute an estimate of this variance-

covariance matrix by using V̂ (β̂) = MS[E](X ′X)−1. The elements of this matrix are

useful in constructing confidence intervals and performing hypothesis tests for β0 and β1.

REMARK : Everything we have shown (and will show) for the multiple regression setting

also holds in the simple-linear regression setting (i.e., when p = 1).
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6.6 The hat matrix and geometric considerations

We now discuss some geometric considerations involved with fitting linear models. Al-

though this discussion isn’t imperative to your being able to fit models to data (e.g., run

SAS), it can greatly enhance your appreciation for the theory that underpins it.

TERMINOLOGY : We call M = X(X ′X)−1X ′ the hat matrix. Observe that

MY = X(X ′X)−1X ′Y = Xβ̂ = Ŷ ,

so that, in a sense, the hat matrix M “puts the hat on” Y ; i.e., M turns the observed

responses in Y into the fitted values in Ŷ . Here are some facts regarding the hat matrix:

• The hat matrix M is symmetric and idempotent; i.e., M ′ = M and M 2 = M ,

and MX = X.

• C(M) = C(X) and r(M ) = r(X).

• Since MY = Ŷ = Xβ̂ ∈ C(X), geometrically, M projects Y onto C(X). Fur-

thermore, since β̂ is the value that minimises SSE(β) = (Y −Xβ)′(Y −Xβ) =

||Y −Xβ||2, which is simply the squared distance between Y and Xβ, we some-

times call M a perpendicular projection matrix.

• Let hij denote the (i,j)th element of M . The diagonal elements of M ; i.e.,

hii = x′i(X
′X)−1xi,

where x′i denotes the ith row of the design matrix X, are called the leverages. As

we have already seen, leverages can be important in detecting outliers.

ANOTHER IMPORTANT MATRIX : The matrix I − M is also important. Like M ,

the matrix I−M is also symmetric and idempotent (verify!). We know what M “does”

to Y . What does I −M “do” to Y ? Note that

(I −M)Y = Y − Ŷ = e,
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so the matrix I−M turns Y into e, the vector of least-squares residuals. Geometrically,

the matrix I−M projects Y into a space called the error space. This space is denoted

by C(I −M ).

ORTHOGONALITY : It is easy to show that (I −M)X = 0. This results from the fact

that C(X) and C(I −M) are orthogonal spaces; i.e., any vector in C(X) is orthogonal

to any vector in C(I −M). Also, note that

Y = MY + (I −M)Y

= Ŷ + (Y − Ŷ )

= Ŷ + e.

RESULT : Any data vector Y can be uniquely decomposed into two parts; namely,

Ŷ ∈ C(X) and e ∈ C(I −M). Since Ŷ and e are orthogonal, it follows that Ŷ
′
e = 0.

6.7 The analysis of variance for multiple linear regression

Just as we did in the simple linear case, we aim to summarise, in tabular form, the

amount of variability due to the regression (model) and the amount of variability due

to the error.

RESULT : Consider the quadratic form Y ′Y , and note that we can write it as

Y ′Y = Y ′(M + I −M)Y

= Y ′MY + Y ′(I −M)Y

= Y ′MMY + Y ′(I −M)(I −M )Y

= Ŷ
′
Ŷ + e′e.

Algebraically, this means that
n∑

i=1

Y 2
i =

n∑
i=1

Ŷ 2
i +

n∑
i=1

(Yi − Ŷi)
2.

In words, the uncorrected total sum of squares
∑n

i=1 Y 2
i equals the uncorrected re-

gression (model) sum of squares
∑n

i=1 Ŷ 2
i plus the error sum of squares

∑n
i=1(Yi − Ŷi)

2.
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CORRECTED SUMS OF SQUARES : Since interest often lies in those regression coef-

ficients attached to predictor variables; i.e., β1, β2, ..., βp, it is common to “remove” the

effects of fitting the intercept term β0, the overall mean of Y (ignoring the predictor

variables). This removal is accomplished by subtracting nY
2

from both sides of the last

equation to get
n∑

i=1

Y 2
i − nY

2
=

n∑
i=1

Ŷ 2
i − nY

2
+

n∑
i=1

(Yi − Ŷi)
2.

or, equivalently,
n∑

i=1

(Yi − Y )2

︸ ︷︷ ︸
SS[TOT]

=
n∑

i=1

(Ŷi − Y )2

︸ ︷︷ ︸
SS[R]

+
n∑

i=1

(Yi − Ŷi)
2

︸ ︷︷ ︸
SS[E]

.

The terms SS[TOT] and SS[R] here are called the corrected total and corrected regres-

sion sums of squares, respectively, for the reasons just described. This is the partitioning

of the sums of squares that SAS uses!!

SUMS OF SQUARES AS QUADRATIC FORMS : To enhance the understanding of the

partitioning of sums of squares, we express the SS[TOT] = SS[R] + SS[E] partition in

terms of quadratic forms. The basic (uncorrected) partition is given by

Y ′Y = Y ′MY + Y ′(I −M )Y

In words, the uncorrected total sum of squares Y ′Y equals the uncorrected regression

(model) sum of squares Y ′MY plus the error sum of squares Y ′(I −M)Y .

CORRECTED SUMS OF SQUARES : As before, we can “remove” the effects of fitting

the intercept term β0. This removal is accomplished by subtracting nY
2

= Y ′n−1JY

from both sides of the last equation to get

Y ′Y − Y ′n−1JY = Y ′MY − Y ′n−1JY + Y ′(I −M)Y

or, equivalently,

Y ′(I − n−1J)Y︸ ︷︷ ︸
SS[TOT]

= Y ′(M − n−1J)Y︸ ︷︷ ︸
SS[R]

+ Y ′(I −M)Y︸ ︷︷ ︸
SS[E]

.

We combine all of this information into an ANOVA table.
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Table 6.16: The general form of an analysis of variance table for multiple linear regres-

sion. All sums of squares are assumed to be of the corrected type.

Source df SS MS F

Regression p SS[R] MS[R] F = MS[R]
MS[E]

Error n− p− 1 SS[E] MS[E]

Total n− 1 SS[TOT]

INTERPRETING THE DEGREES OF FREEDOM : The ANOVA table here has the

same structure as the ANOVA table for straight-line model. The only difference is the

degrees of freedom.

• The corrected SS[TOT] has n − 1 degrees of freedom. Again, as before, we can

view this as a statistic that has “lost” a degree of freedom for having to estimate

the overall mean of Y , β0, with Y . Also, one will note that r(I − n−1J) = n− 1.

• The corrected SS[R] has p degrees of freedom, the number of predictor variables

in the model. Since r(M) = r(X) = p + 1, one will note that r(M − n−1J) = p.

• SS[E] has n − p − 1 degrees of freedom, obtained by subtraction. Also, one will

note that r(I −M ) = n− p− 1.

USING THE F STATISTIC : The F statistic in the ANOVA table above is used to test

whether or not at least one of the independent variables x1, x2, ..., xp adds to the model;

i.e., it is used to test

H0 : β1 = β2 = · · · = βp = 0

versus

H1 : at least one of the βi is nonzero

in the full model Yi = β0 +β1xi1 +β2xi2 + · · ·+βpxip + εi. Note that if H0 is rejected, we

do not know which one or how many of the βi’s are nonzero; we only that at least one is.
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MATHEMATICAL JUSTIFICATION : When H0 is true, it follows that SS[R]/σ2 ∼ χ2
p,

SS[E]/σ2 ∼ χ2
n−p−1, and that SS[R] and SS[E] are independent. These facts would be

proven in a more advanced linear models course. Thus, under H0,

F =
SS[R]/pσ2

SS[E]/(n− p− 1)σ2
=

MS[R]

MS[E]
∼ Fp,n−p−1.

As in the straight-line case, H0 is rejected whenever the F statistic gets too large; that

is, this is a one-sided, upper-tail test with rejection region RR = {F : F > Fp,n−p−1,α}
where Fp,n−p−1,α denotes the 1−α quantile of the F distribution with p (numerator) and

n− p− 1 (denominator) degrees of freedom. P values are computed as areas to the right

of F on the Fp,n−p−1 distribution.

EXPECTED MEAN SQUARES : We have already shown that E(MS[E]) = σ2. This

holds whether or not H0 is true. We now investigate E(MS[R]). Since E(Y ) = Xβ and

V (Y ) = σ2I, we can compute

E(SS[R]) = E[Y ′(M − n−1J)Y ]

= (Xβ)′(M − n−1J)Xβ︸ ︷︷ ︸
= 0, under H0

+tr[(M − n−1J)σ2I].

When H0 : β1 = β2 = · · · = βp = 0 is true, the first term equals zero (verify!). To handle

the second term, note that

tr[(M − n−1J)σ2I] = σ2tr[(M − n−1J)]

= σ2[tr(M )− tr(n−1J)]

= σ2[r(M)− tr(n−1J)]

= σ2[r(M)− 1]

= σ2[r(X)− 1]

= σ2[p + 1− 1]

= pσ2.

We have shown that, when H0 is true, E(SS[R]) = pσ2. Thus, only when H0 is true,

E(MS[R]) = E

(
SS[R]

p

)
= σ2.
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REALISATION : When H0 is true, both MS[R] and MS[E] are estimating the same

quantity, and, thus, the F statistic should be close to one. When H0 is not true, the

term (Xβ)′(M − n−1J)Xβ > 0, and, hence, MS[R] is estimating something (perhaps

much) larger than σ2. In this case, we would expect F to be (perhaps much) larger than

one. This gives an intuitive explanation of why F should be large when H0 is not true.

The term (Xβ)′(M − n−1J)Xβ is sometimes called a non-centrality parameter.

THE COEFFICIENT OF DETERMINATION : Since SS[TOT] = SS[R] + SS[E], it fol-

lows that the proportion of the total variation in the data explained by the model is

R2 =
SS[R]

SS[TOT]
.

As in the straight-line case, the statistic R2 is called the coefficient of determination.

It has the analogous interpretation in multiple linear regression settings as it did in the

straight-line case.

Example 6.5 (cheese.sas). With the cheese data in Example 6.1, consider the full

model Yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi, for i = 1, 2, ..., 30. The ANOVA table for these

data, obtained using SAS, is shown below.

Source DF SS MS F Pr > F

Model 3 4994.509 1664.836 16.22 <0.0001

Error 26 2668.378 102.629

Corrected Total 29 7662.887

The F statistic is used to test

H0 : β1 = β2 = β3 = 0

versus

H1 : not H0.

Since the P value for the test is so small, we would conclude that at least one of x1, x2,

or x3 is important in describing taste. The coefficient of determination is R2 ≈ 0.652.

Thus, about 65 percent of the variability in the taste data is explained by x1, x2, and x3,

assuming that E(Y |x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3 is the true regression function.
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6.8 Sequential and partial sums of squares

There are two types of sums of squares that can be helpful in hypothesis testing with

regression models; namely, sequential sums of squares and partial sums of squares. We

now examine them both.

SEQUENTIAL SUMS OF SQUARES : Sequential sums of squares build up the sums

of squares due to the regression (model). Their values depend on the particular order in

which the x’s are “added to the model.” Consider the breakdown of SS[R] in Table 6.17.

Table 6.17: Sequential sums of squares and their partitioning of the corrected SS[R].

Sequential ANOVA df SS

Regression on x1 (after β0) 1 R(β1|β0)

Regression on x2 (after β0 and x1) 1 R(β2|β0, β1)

Regression on x3 (after β0, x1, and x2) 1 R(β3|β0, β1, β2)
...

...
...

Regression on xp (after β0, x1, x2, ..., xp−1) 1 R(βp|β0, β1, ..., βp−1)

FACT : The sequential sums of squares in Table 6.17 add up to the corrected SS[R]

from the overall ANOVA; that is,

SS[R] = R(β1|β0) + R(β2|β0, β1) + R(β3|β0, β1, β2) + · · ·+ R(βp|β0, β1, ..., βp−1).

REMARK : Sequential sums of squares help us assess the merit of adding an individual

x to the model in a stepwise manner. There are cases where this way of thinking is

particularly helpful. For example, consider the cubic model

Yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi,

and suppose that we were interested in whether or not the quadratic and cubic terms

were really needed (i.e., whether or not β2 = β3 = 0). We can address this question

by examining the sizes of R(β2|β0, β1) and R(β3|β0, β1, β2). If these are both large, then
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both x2 and x3 should be kept in the model. If not, then neither should be kept. If

R(β2|β0, β1) is large, but R(β3|β0, β1, β2) is not, then we might consider keeping x2, but

not x3. We’ll formalise this notion of “large” momentarily....

NON-UNIQUENESS : The order of the sequential ANOVA is not unique!! If you change

the order in which the variables are added to the model, the sequential sums of squares

will also change (of course, they will still sum to the uncorrected SS[R]). In SAS, the

order depends upon the left-to-right specification in the MODEL statement. Sequential

sums of squares are referred to as Type I SS in SAS.

Example 6.6 (cheese.sas). With the cheese data in Example 6.1, consider the full

model

TASTE = β0 + β1ACETIC + β2H2S + β3LACTIC + ε.

We now compute the sequential sums of squares for the cheese data. The model statement

model taste = acetic h2s lactic;

in glm produces the following sequential sums of squares breakdown:

Source DF Type I SS MS F Value Pr>F

acetic 1 2314.142 2314.142 22.55 <.0001

h2s 1 2147.108 2147.108 20.92 0.0001

lactic 1 533.259 533.259 5.20 0.0311

Thus, R(β1|β0) = 2314.142, R(β2|β0, β1) = 2147.108, and R(β3|β0, β1, β2) = 533.259.

One will note that these sum to SS[R] = 4994.509 from the overall ANOVA. The F

statistics test, sequentially, whether or not each variable should be added to the model.

For example, F = 22.55 tests

H0 : TASTE = β0 + ε

H1 : TASTE = β0 + β1ACETIC + ε.

It looks like ACETIC should be added to the model that includes only the intercept β0.
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Next, F = 20.92 tests

H0 : TASTE = β0 + β1ACETIC + ε

H1 : TASTE = β0 + β1ACETIC + β2H2S + ε.

It looks like H2S should be added to the model that already includes ACETIC (and β0).

Finally, F = 5.20 tests

H0 : TASTE = β0 + β1ACETIC + β2H2S + ε

H1 : TASTE = β0 + β1ACETIC + β2H2S + β3LACTIC + ε.

Thus, LACTIC should be added to the model that includes H2S and ACETIC (and β0).

A DIFFERENT ORDERING : Now, suppose that I had used the model statement

model taste = h2s lactic acetic;

for the model

TASTE = β0 + β1H2S + β2LACTIC + β3ACETIC + ε

(note that I permuted the order of the independent variables in the model statement).

This produces the following sequential sums of squares breakdown:

Source DF Type I SS MS F Value Pr>F

h2s 1 4376.833 4376.833 42.65 <.0001

lactic 1 617.120 617.120 6.01 0.0212

acetic 1 0.555 0.555 0.01 0.9479

Using this ordering of the x’s produces a different breakdown; here, R(β1|β0) = 4376.833,

R(β2|β0, β1) = 617.120, and R(β3|β0, β1, β2) = 0.555; however, one will note that the

sequential sums of squares for this new ordering still sum to SS[R] = 4994.509 from

the overall ANOVA! It is interesting to note that, for this ordering, we would not add

ACETIC to a model that already includes H2S and LACTIC. The reader will remember that

we added ACETIC under the last ordering; however, in that case, we were adding ACETIC

to a model that only included β0.
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F STATISTICS BASED ON SEQUENTIAL SUMS OF SQUARES : The F statistics

based on sequential sums of squares are used to test whether or not xk should be added

to a model that already includes x1, x2, ..., xk−1 (and β0), for k = 1, 2, ..., p; i.e., the

statistic Fk tests

H0 : Yi = β0 + β1xi1 + β2xi2 + · · ·+ βk−1xi(k−1) + εi

H1 : Yi = β0 + β1xi1 + β2xi2 + · · ·+ βk−1xi(k−1) + βkxik + εi

and is formed by taking the ratio of R(βk|β0, β1, ..., βk−1) to the MS[E] from the overall

ANOVA; i.e.,

Fk =
R(βk|β0, β1, ..., βk−1)

MS[E]
.

When H0 is true (i.e., the model which excludes xk is more appropriate; i.e., βk = 0),

then Fk ∼ F1,n−p−1. Large values of Fk are evidence against H0.

PARTIAL SUMS OF SQUARES : Partial sums of squares help us to assess the value

of adding a predictor variable x to a model that already contains all other p−1 covariates

(and β0). That is, for k = 1, 2, ..., p,

Partial SS for xk = R(βk|β0, β1, ..., βk−1, βk+1, ..., βp)

Unlike the sequential sums of squares, partial sums of squares do not necessarily sum to

SS[R]. Partial sums of squares are referred to as Type II SS or Type III SS in SAS.

INTERESTING NOTE : When the columns of X are orthogonal, it turns out that the

sequential and partial sums of squares will always be equal. In this situation, and only

in this situation, the partial sums of squares will sum to SS[R]. This fact turns out to be

very useful with ANOVA models (not so much with regression models).

PARTIAL F TESTS : In a sense, the partial sums of squares allow us to study the effect

of putting a particular xk into the model last; that is, they allow us to test, for any

k = 1, 2, ..., p,

H0 : Yi = β0 + β1xi1 + · · ·+ βk−1xi(k−1) + βk+1xi(k+1) + · · ·+ βpxip + εi

H1 : Yi = β0 + β1xi1 + · · ·+ βpxip + εi (the full model).
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The F statistic used to test H0 versus H1 is given by

Fk =
R(βk|β0, β1, ..., βk−1, βk+1, ..., βp)

MS[E]
.

When H0 is true (i.e., the model which excludes xk is more appropriate; i.e., βk = 0),

then Fk ∼ F1,n−p−1. Large values of Fk are evidence against H0.

REALISATION : You will recall from Section 6.4, we used the statistic

t =
β̂k√

skkMS[E]

to test H0 : βk = 0 versus H1 : βk 6= 0. This is essentially the same situation expressed

in the last set of hypotheses! Our interpretation is the same here using partial sums of

squares as it was using the t statistic; namely, we are assessing whether or not xk is useful

in describing Y , with the inclusion of the other predictor variables in the model.

MAIN POINT : Testing

H0 : Yi = β0 + β1xi1 + · · ·+ βk−1xi(k−1) + βk+1xi(k+1) + · · ·+ βpxip + εi

H1 : Yi = β0 + β1xi1 + · · ·+ βpxip + εi (the full model).

using the F statistic based on the partial sums of squares and testing H0 : βk = 0 versus

H1 : βk 6= 0 using the t statistic mentioned above are, in fact, the same test! Actually,

the F statistic from the partial F test is the square the t statistic from the t test; that

is, F = t2.

REMARK : Some (but not all) prefer the more flexible t procedure in this situation. The

partial F test is rather restrictive; it only tests H0 : βk = 0 versus H1 : βk 6= 0. The t

procedure can handle one-sided alternatives and nonzero values under H0.

ALGEBRAIC LINK : Equating F and t2 above, we find that

Partial SS for xk = R(βk|β0, β1, ..., βk−1, βk+1, ..., βp) =
β̂2

k

skk

,

where skk = (X ′X)−1
k,k, for k = 1, 2, ..., p.
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Example 6.7 (cheese.sas). With the cheese data in Example 6.1, consider the full

model Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi, for i = 1, 2, ..., 30. In Example, 6.4, we tested

whether or not the hydrogen sulfide concentration was important in describing taste by

testing H0 : β2 = 0 versus H1 : β2 6= 0. Recall, that we computed t = 3.134 and rejected

H0. Essentially, the test of H0 : β2 = 0 versus H1 : β2 6= 0 is equivalent to testing the

smaller model that excludes x2 versus the larger model which includes it; i.e.,

H0 : Yi = β0 + β1xi1 + β3xi3 + εi

H1 : Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi

so we can also use a partial F test to test this same hypothesis. From SAS, I computed

the partial (Type III) sums of squares table:

Source DF Type III SS MS F Value Pr>F

acetic 1 0.555 0.555 0.01 0.9419

h2s 1 1007.691 1007.691 9.82 0.0042

lactic 1 533.259 533.259 5.20 0.0311

The F statistic, based on the partial sums of squares, is given by

F2 =
R(β2|β0, β1, β3)

MS[E]
=

1007.691

102.630
= 9.82,

which is highly significant. Thus, at the α = 0.05 level, we have significant evidence

that the hydrogen sulfide concentration, after adjusting for the effects of acetic and lactic

concentrations, is important in describing taste. This is the same conclusion we reached

with the t test (as it should be). In fact, you will note that t2 = (3.134)2 ≈ 9.82 = F (up

to rounding error). Finally, note that

β̂2
2

s22

=
(3.91178179)2

0.015185245
≈ 1007.691 = R(β2|β0, β1, β3) = Partial SS for x2.

Note that I retained many decimal places in this calculation so I didn’t incur too large

of a rounding error. Recall that SAS gives β̂2 and s22 to many decimal places.
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6.9 Confidence intervals for E(Y |x) in multiple regression set-

tings

In Chapter 4, with our simple linear regression model Yi = β0+β1xi+εi, for i = 1, 2, ..., n,

where εi ∼ iid N (0, σ2), we learned how to obtain confidence intervals for the mean

response E(Y |x0) = β0 + β1x0 and prediction intervals for a new value Y0. Extending

these ideas to a multiple-regression setting is straightforward.

SETTING AND GOALS : Consider our multiple regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi,

for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2), or, equivalently,

Y = Xβ + ε,

where ε ∼ Nn(0, σ2I). Our goal is to obtain a 100(1−α) percent confidence interval for

E(Y |x0) ≡ µ(x0) = β0 + β1x01 + β2x02 + · · ·+ βpx0p,

the mean of the response Y when x′ = x′0 ≡ (x01, x02, ..., x0p).

AN OBVIOUS POINT ESTIMATOR: Define a′ = (1,x′0) = (1, x01, x02, ..., x0p). Then,

we can write

E(Y |x0) = β0 + β1x01 + β2x02 + · · ·+ βpx0p = a′β ≡ θ.

Note that θ is a scalar since a′ is 1× (p+1) and β is (p+1)×1. To estimate a′β, we will

use θ̂ = a′β̂, where β̂ is the least-squares estimator of β. To find the confidence interval,

we need to obtain the sampling distribution of θ̂ = a′β̂. The mean of θ̂ is given by

E(θ̂) = E(a′β̂) = a′E(β̂) = a′β = θ;

thus, θ̂ is an unbiased estimator of θ. The variance of θ̂ is given by

V (θ̂) = V (a′β̂)

= a′V (β̂)a

= a′σ2(X ′X)−1a

= σ2a′(X ′X)−1a.
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Furthermore, θ̂ = a′β̂ is just a linear combination of β̂0, β̂1, ..., β̂p, all of which are

normally distributed. Thus, θ̂ = a′β̂ is normally distributed as well! Summarising, we

have that

θ̂ = a′β̂ ∼ N{
θ, σ2a′(X ′X)−1a

}
,

where θ = a′β. Standardising, it follows that

Z =
θ̂ − θ√

σ2a′(X ′X)−1a
∼ N (0, 1)

and that

t =
θ̂ − θ√

MS[E]a′(X ′X)−1a
∼ tn−p−1.

Thus, we can use t as a pivotal quantity to derive confidence intervals and hypothesis

tests involving θ = a′β. A 100(1−α) percent confidence interval for θ = a′β = E(Y |x0)

is given by

θ̂ ± tn−p−1,α/2

√
MS[E]a′(X ′X)−1a,

and a level α test of H0 : θ = θ0 versus a one or two-sided alternative uses

t =
θ̂ − θ0√

MS[E]a′(X ′X)−1a

as a test statistic. The rejection region is located in the appropriate tails of the tn−p−1

reference distribution. P -values come from this distribution as well.

Example 6.8 (cheese.sas). With our cheese data from Example 6.1, we want to find

a 95 percent confidence interval for E(Y |x0) = β0 + 5β1 + 6β2 + β3. Here, x0 = (5, 6, 1),

so that a′ = (1, 5, 6, 1). We have

̂E(Y |x0) = θ̂ = a′β̂ = (1, 5, 6, 1)




−28.877

0.328

3.912

19.670



≈ 15.905

and

a′(X ′X)−1a = (1, 5, 6, 1)




3.795 −0.760 0.087 −0.071

−0.760 0.194 −0.020 −0.128

0.087 −0.020 0.015 −0.046

−0.071 −0.128 −0.046 0.726







1

5

6

1



≈ 0.181.
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Thus, a 95 percent confidence interval for E(Y |x0) = θ = β0 + 5β1 + 6β2 + β3 is given by

15.905± 2.056
√

102.630× 0.181,

or (7.310, 24.497). Thus, when x01 = 5, x02 = 6, and x03 = 1, we are 95 percent confident

that the mean taste rating E(Y |x0) is between 7.310 and 24.497.

6.10 Prediction intervals for a future value of Y in multiple

linear regression

Analogous to our derivation for prediction intervals in the simple linear regression setting,

it is not overly difficult to show that, with θ̂ = a′β̂,

θ̂ ± tn−p−1,α/2

√
MS[E] {1 + a′(X ′X)−1a},

is a 100(1 − α) percent prediction interval for Y0 when x′ = x′0 ≡ (x01, x02, ..., x0p).

Here, a0 = (1, x0) = (1, x01, x02, ..., x0p), as before. Comparing this to the 100(1 − α)

percent confidence interval for E(Y |x0), we see, again, that there is an extra “1” in

the estimated standard error. As in the straight-line case, this results from the extra

variability which arises from having to predict the random quantity Y0 instead of having

to estimate the mean E(Y |x0).

Example 6.9 (cheese.sas). With our cheese data from Example 6.1, we want to find

a 95 percent prediction interval for a particular taste rating score Y when x0 = (5, 6, 1).

Here, x0 = (5, 6, 1), so that a′ = (1, 5, 6, 1). The prediction interval is given by

15.905± 2.056
√

102.630(1 + 0.181),

or (−6.624, 38.431). Thus, when x01 = 5, x02 = 6, and x03 = 1, we are 95 percent confi-

dent that the taste rating for a new value of Y will be between −6.624 and 38.431. One

will immediately note that, again, this prediction interval is wider than the correspond-

ing confidence interval for E(Y |x0). Also, note that the lower limit for the prediction

interval is negative, which may not even make sense in this application.
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6.11 Testing full versus reduced models in multiple linear re-

gression

SETTING : Consider our (full) multiple regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi,

for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2), or, equivalently,

Y = Xβ + ε,

where ε ∼ Nn(0, σ2I). Sometimes, it is of interest to determine whether or not a smaller

model is adequate for the data. That is, can we “throw out” some of the independent

variables, write a smaller model, and have that smaller model do “just as well” as the

full model? In terms of the regression parameters themselves, we basically are asking,

“are some of the parameters β0, β1, β2, ..., βp essentially no different from zero?”

TERMINOLOGY : A well-known principle in science is the Parsimony Principle,

which states, loosely speaking, that the simplest of two competing theories is to be

preferred. Applying this principle to regression modelling leads us to choose models that

are as simple as possible, but, yet, do an adequate job of describing the response. Seldom

(i.e., never) will there be a model that is exactly correct, but, hopefully, we can find a

model that is reasonable and does a good job summarising the true relationship between

the response and the available predictor variables.

REMARK : Besides their ease of interpretation, smaller models confer statistical benefits,

too. Remember that for each additional predictor variable we add to the model, there

is an associated regression parameter which has to be estimated. For each additional

regression parameter that we have to estimate, we lose a degree of freedom for error.

Why is this important? Remember that MS[E], our estimator for the error variance σ2

uses the degrees of freedom for error in its computation! Thus, the smaller this degree

of freedom value is, the fewer observations we are using to estimate σ2. With a poor

estimate of σ2, hypothesis tests, confidence intervals, and prediction intervals are likely

to be poor as well.
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Example 6.10 (cheese.sas). With our cheese data from Example 6.1, the full model

is given by

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi.

Suppose that we consider the smaller model (i.e., the reduced model)

Yi = γ0 + γ1xi3 + εi,

for i = 1, 2, ..., 30. In the reduced model, we are excluding the independent variables x1

(ACETIC) and x2 (H2S). Does the smaller model do just as well at describing the data

as the full model? How can we test this? One will note that, in this example, we are

essentially asking ourselves whether or not H0 : β1 = β2 = 0 is supported by the data.

FULL-VERSUS-REDUCED MODEL TESTING SETUP : Consider testing

Y = X0γ + ε (a reduced model)

versus

Y = Xβ + ε, (the full model)

where X0 is a submatrix of X. Define the hat matrices for the full and reduced models

as M = X(X ′X)−1X ′ and M 0 = X0(X
′
0X0)

−1X ′
0, respectively, so that M projects

Y onto C(X) and that M 0 projects Y onto C(X0). Clearly, C(X0) ⊆ C(X).

REGRESSION SUMS OF SQUARES FOR THE TWO COMPETING MODELS : From

Section 6.7, we know that SS[R]F = Y ′(M − 1
n
J)Y is the regression sum of squares for

the full model (correcting for β0). Similarly, SS[R]R = Y ′(M 0− 1
n
J)Y is the regression

sum of squares for the reduced model (again, correcting for β0). Since the regression

sums of squares SS[R] can never decrease by adding predictor variables, it follows that

SS[R]F = Y ′(M − n−1J)Y ≥ Y ′(M 0 − n−1J)Y = SS[R]R

whenever C(X0) ⊆ C(X); i.e., the sums of squares for regression in the smaller model is

always less than (or equal to) than the sums of squares for regression in the full model.

In the light of this, our intuition should suggest the following:
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• if SS[R]F = Y ′(M − 1
n
J)Y and SS[R]R = Y ′(M 0 − 1

n
J)Y are “close,” then the

additional predictor variables are not adding too much (in the form of an increase

in sums of squares for the regression), and the reduced model probably does just

as well at describing the data as the full model does.

• if SS[R]F = Y ′(M − 1
n
J)Y and SS[R]R = Y ′(M 0 − 1

n
J)Y are not “close,” then

the additional predictor variables are adding a lot (in the form of an increase in

sums of squares for the regression). This suggests that the reduced model does an

insufficient job of describing the data when compared to the full model.

REMARK : As you might suspect, we base our decision on whether or not the reduced

model is adequate by examining the size of

SS[R]F − SS[R]R = Y ′(M − n−1J)Y − Y ′(M 0 − n−1J)Y

= Y ′(M −M 0)Y .

If this difference is large, this suggests that the reduced model does not do a good job of

describing the data (when compared to the full model). You should be aware that in this

presentation, we are assuming that the full model already does a good job of describing

the data; we are trying to find a smaller model that does just as well.

REALISATION : Note that SS[R]F − SS[R]R = SS[E]R − SS[E]F . That is, the difference

in the regression sums of squares is always equal to the difference in the error sums of

squares (in absolute value).

F STATISTIC : Theoretical arguments in linear models show that when H0 is true,

F =
Y ′(M −M 0)Y /(dfeR − dfeF )

MS[E]F
∼ FdfeR−dfeF ,dfeF

,

where dfeR and dfeF denote the error degrees of freedom associated with the reduced

and full models, respectively, and MS[E]F denotes the MS[E] from the full model. Thus,

to conduct an α level test, we reject the reduced model Y = X0γ + ε in favour of the

full model Y = Xβ +ε when F gets large. That is, this is one-sided upper-tail test with

rejection region RR = {F : F > FdfeR−dfeF ,dfeF ,α}.
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Example 6.11 (cheese.sas). In Example 6.10, we want to test, using α = 0.05,

H0 : Yi = γ0 + γ1xi3 + εi

H1 : Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi.

That is, we want to know whether or not the variables x1 and x2 should be added to the

model. Here, the submatrix X0 corresponding to the reduced model is the full model

matrix X with the second and third columns removed; i.e., the columns for x1 and x2.

Note that we can fit the reduced model by changing the model statement in SAS to

MODEL TASTE = LACTIC. Here are the ANOVA tables for the reduced and full models.

Analysis of Variance: Reduced Model

Source DF SS MS F Pr > F

Model 1 3800.398 3800.398 27.55 <0.0001

Error 28 3862.489 137.946

Corrected Total 29 7662.887

Analysis of Variance: Full Model

Source DF SS MS F Pr > F

Model 3 4994.509 1664.836 16.22 <0.0001

Error 26 2668.378 102.629

Corrected Total 29 7662.887

Thus, with Y ′(M − M 0)Y = SS[R]F − SS[R]R = 4994.509 − 3800.398 = 1194.111,

dfeR = 28, dfeF = 26, and MS[E]F = 102.630, we compute the F statistic to be

F =
Y ′(M −M 0)Y /(dfeR − dfeF )

MS[E]F
=

1194.111/2

102.629
= 5.82.

Since F = 5.82 > F2,26,0.05 = 3.369, we would reject H0 and conclude that the reduced

model is not as good as the full model at describing these data. That is, ACETIC and H2S

significantly add to a model that already includes LACTIC.

Question: In this example, how could you compute Y ′(M −M 0)Y using sequential

sums of squares?
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7 Additional Topics in Multiple Linear Regression

Complimentary reading from Rao: Chapter 11 (§ 11.8-11.10).

7.1 Introduction

In Chapter 6, we discussed many of the important concepts involving multiple linear

regression models of the form Y = Xβ + ε. In particular, we focused on (a) least-

squares estimation and inference for β, (b) estimating mean values of Y and predicting

future values of Y (at a given value of x0), (c) the different types of sums of squares,

and (d) the general notion of reduced-versus-full model testing. In this chapter, we tie

up some loose ends. In particular, I will focus on multiple-regression model diagnostics,

outlier detection, influential observations, multicollinearity, criteria for choosing the best

model, and sequential variable selection procedures.

Regression analysis consists of two different areas. So far, we have largely focused on

aggregate analysis (e.g., inference for regression coefficients, testing models, predic-

tions, etc.). This chapter starts off by discussing case analysis (e.g., checking the model

assumptions and model-improvement strategies). The two types of analysis are not dis-

joint; rather, they are interrelated and complimentary. The following steps, however,

outline generally what I envision to be a thorough regression analysis:

1. Formulate the problem, adopt a model, make assumptions

2. Estimation procedure

3. Estimates, confidence intervals, hypothesis tests, tentative conclusions

4. Check model assumptions (using the observed residuals), compute diagnostic sta-

tistics, transformations, determination of influential cases and outliers

5. Update model as necessary.
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7.2 Least-squares residuals and residual plots

Recall our multiple linear regression model Yi = β0 + β1xi1 + β2xi2 + · · · + βpxip + εi,

for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2), or, in matrix notation, Y = Xβ + ε, where

ε ∼ Nn(0, σ2In). We can check many of the usual assumptions (e.g., normality, constant

variance, etc.) by analysing the residuals. Recall that the ith least-squares residual is

given by

ei = Yi − Ŷi,

where Yi is ith observed value and Ŷi = β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂pxip is the ith fitted

value. We can also express the residuals using vector notation. Recall that the vector of

least-squares residuals

e = Y − Ŷ ,

where Y is the vector of observed responses, and Ŷ is the vector of fitted values. Also,

recall that

Ŷ = Xβ̂ = X(X ′X)−1X ′Y = MY ,

where the hat matrix M = X(X ′X)−1X ′. The matrix M has diagonal elements hii =

x′i(X
′X)−1xi, where x′i denotes the ith row of the design matrix X. The value hii is

called the leverage for the ith case; i = 1, 2, ..., n. Note that since Ŷ = MY , we can

write

e = Y − Ŷ = Y −MY = (I −M)Y .

From this, we can show (verify!) that E(e) = 0 and that

V (e) = σ2(I −M) =




σ2(1− h11) −σ2h12 · · · −σ2h1n

−σ2h21 σ2(1− h22) · · · −σ2h2n

...
...

. . .
...

−σ2hn1 −σ2hn2 · · · σ2(1− hnn)




.

Thus, the variance of the ith residual is given by V (ei) = σ2(1 − hii), for i = 1, 2, ..., n.

Finally, recall that under our model assumptions, ei = Yi− Ŷi (when viewed as a random

variable) is a linear combination of the normal random variables Yi and Ŷi; thus, it, too,
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Figure 7.21: QQ plot of the residuals from the full model fit to the cheese data.

is normally distributed! Putting this all together, we have that, when ei is viewed as a

random variable,

ei ∼ N{0, σ2(1− hii)},

when all of our model assumptions hold.

NORMALITY : As in the straight-line regression setting, we can assess the plausibility of

the normality assumption by plotting the residuals. Histograms of the observed residuals

and normality plots are quite common.

DIAGNOSING NONCONSTANT VARIANCE AND OTHER MODEL INADEQUA-

CIES : As in straight-line regression, a good visual display to use for diagnosing noncon-

stant variance and model misspecification is the plot of (observed) residuals versus pre-

dicted values; i.e., a plot of ei versus ŷi. If the model holds, it follows that Cov(e, Ŷ ) = 0,

(verify!) in which case, it follows that Cov(ei, Ŷi) = 0, for each i = 1, 2, ..., n; i.e., the

residuals and predicted values are uncorrelated. Thus, again, residual plots that display

nonrandom patterns suggest that there are some problems with our model assumptions.
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Figure 7.22: Residual plot from the full model fit to the cheese data.

Example 7.1 (cheese-2.sas). We now analyse the residuals from the full model fit to

the cheese data from Example 6.1. Recall that our fitted model was given by

T̂ASTEi = −28.877 + 0.328ACETICi + 3.912H2Si + 19.670LACTICi.

Figure 7.21 displays the normal probability plot (qq-plot); the normality assumption

doesn’t seem to be a large concern. Figure 7.22 displays the residual plot; this plot

doesn’t suggest any obvious model misspecification or a problem with constant variance.

7.3 Outlier detection and influence analysis

Just as we did in the simple-linear regression case, we can use residuals to help us assess

whether or not a particular case is an outlier. Recall that, under our model assumptions,

ei ∼ N{0, σ2(1 − hii)}, where hii is the ith diagonal element of the hat matrix M . To

overcome the problem of unequal variances, we can, as in the simple linear case, construct

studentised residuals that do have equal variances.

PAGE 162



CHAPTER 7 STAT 3601

1. Internally studentised residuals:

ri =
ei√

s2(1− hii)
,

where s2 = MS[E] is computed from all of the data. Just as in the straight-line

case, E(ri) = 0 and V (ri) = 1. Values of |ri| larger than 3 or so should cause

concern.

2. Externally studentised residuals:

ti =
ei√

s2
−i(1− hii)

,

where s2
−i = MS[E] computed from all of the data except the ith case. It can be

shown algebraically that

s2
−i =

(n− p)s2 − e2
i /(1− hii)

n− p− 1
.

DETECTING OUTLIERS : Under our multiple-regression model assumptions, it turns

out that ti ∼ tn−p−1. Thus, at the α significance level, we may classify observation i as

an outlier, after seeing the data, if |ti| ≥ tn−p−1,α/2n.

Example 7.2 (cheese-2.sas). With the cheese data from Example 6.1, with n = 30,

we could classify an observation as an outlier, at the α = 0.05 significance level, if we

observe |ti| ≥ t26,0.000833 = 3.51. However, the largest |ti| is only 3.02, so we could not

single out any observation as an outlier using this criterion.

TERMINOLOGY : In regression analysis, a case is said to be influential if its removal

from consideration causes a large change in the analysis (e.g., large change in the esti-

mated regression coefficients, ANOVA table, R2, etc.). An influential observation need

not be an outlier (or vice versa). However, most of the time, observations that outliers

are usually influential (and vice versa).

COOK’S DISTANCE : To measure the influence of the ith case, Cook (1997) proposed

the following statistic:

Di =
(β̂−i − β̂)′(X ′X)−1(β̂−i − β̂)

(p + 1)MS[E]
=

r2
i

p + 1

(
hii

1− hii

)
,
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where β̂−i denotes the least-squares estimator for β with the ith case removed and

MS[E] is the mean-squared error using all the data. Large values of Di correspond to

observations that have larger influence. An ad-hoc guideline is to categorise case i as

an influential observation if Di ≥ 4/n.

OTHER INFLUENCE MEASURES : There are other influence diagnostic statistics; e.g.,

Dfits, Dfbetas, Hadi’s influence measure, etc. Cook’s D is the most-widely used.

7.4 Partial regression plots

In simple-linear regression, the relationship between the response Y and the predictor x

is displayed by a scatterplot. In multiple linear regression, the situation is complicated

by the relationship between the several predictors, so a scatterplot between Y and one

of the x’s may not reflect the relationship when adjusted for the other x’s. The partial

regression plot (or added-variable plot) is a graphical device that allows one to

display this relationship. The following steps will produce such a plot for the variable xj:

1. Fit the model regressing Y on all of the x’s except xj and save the residuals. Denote

these residuals by eY |x−j
. Note that the variability in Y which can be explained by

the modelled relationship between Y and all of the x’s except xj has been removed

from these residuals.

2. Fit the model regressing xj on all the other x’s and save the residuals. Denote these

residuals as exj |x−j
. Note that these residuals contain information on the variability

in xj which cannot be explained by the modelled relationship between xj and the

other x’s.

3. Plot eY |x−j
on the vertical axis versus exj |x−j

. This is the partial regression plot

for xj. It shows the relationship between the variability in Y and in xj which is

not explained by their respective linear relationships with all the other x’s.

4. Interpret the plot as you would a scatterplot in the simple linear regression model.
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Figure 7.23: Partial regression plot for the ACETIC predictor with the cheese data.

• A strong linear trend indicates a strong linear relationship between xj and Y , after

having adjusted for all of the other x’s.

• If this plot shows a quadratic trend, say, this suggests that xj and perhaps x2
j

should be included in the model as predictors.

• Random scatter indicates that xj will give you little or no explanatory power in Y

over that which has already been obtained with the other x’s.

• If you create partial regression plots for all of the x’s, do not simply eliminate all x’s

for which there is random scatter in the added variable plot. Multicollinearity

between two x’s could make both of their partial regression plots look random, when

individually, they both were excellent predictors! If you decide to eliminate one of

the x’s from consideration for the final model, it is better to redo the remaining

plots removing that discarded variable from the calculations of the residuals before

deciding which variable to eliminate next.
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Figure 7.24: Partial regression plot for the H2S predictor with the cheese data.

Example 7.3 (cheese-2.sas). Figures 7.23, 7.24, and 7.25 display the partial regression

plots for the ACETIC, H2S, and LACTIC variables, respectively. Of these, it looks like H2S

has the strongest linear relationship with TASTE (when adjusting for the other predictors).

This should not be surprising since H2S had the largest (partial) Type III sums of squares

contribution (followed by LACTIC and ACETIC, in that order). One needs to be careful

not to over-analyse these plots. Remember, that relationships among the predictors

themselves might mask each predictor’s linear relationship with TASTE. But, clearly, H2S’s

looks to be the most important predictor when adjusting for the other two because of

the strong linear trend in the partial regression plot and because of its large (partial)

Type III SS. The following table is reproduced from Chapter 6 for reference. No partial

regression plot shows any evidence of the need to include higher order terms in the model.

Source DF Type III SS MS F Value Pr>F

acetic 1 0.555 0.555 0.01 0.9419

h2s 1 1007.691 1007.691 9.82 0.0042

lactic 1 533.259 533.259 5.20 0.0311
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Figure 7.25: Partial regression plot for the LACTIC predictor with the cheese data.

7.5 Multicollinearity

Multicollinearity (or collinearity) exists when the predictors x1, x2, ..., xp are corre-

lated. We use the term “correlated” loosely here, because in a regression analysis, the

predictors x1, x2, ..., xp are assumed to be fixed.

TERMINOLOGY : A set of regression variables x1, x2, ..., xp is said to be exactly

collinear if there exist constants c0, c1, ..., cp (not all zero) such that

p∑
j=1

cjxj = c0.

Example 7.4. Consider the following data:

x1 x2 x3

1 8 7

2 5 3

6 10 4

PAGE 167



CHAPTER 7 STAT 3601

These predictors are exactly collinear since
∑3

j=1 cjxj = c0, with c1 = −1, c2 = 1,

c3 = −1, and c0 = 0; i.e., x3 = x2 − x1.

A CLOSER LOOK : If a set of variables x1, x2, ..., xp is exactly collinear, this means

that there exists an xj that can be written as a linear combination of the other x’s; i.e.,

cjxj = c0 − c1x1 − · · · − cj−1xj−1 − cj+1xj+1 − · · · − cpxp

=⇒ xj =
c0

cj

− c1

cj

x1 − · · · − cj−1

cj

xj−1 − cj+1

cj

xj+1 − · · · − cp

cj

xp.

Thus, in this situation, xj does not add any information to the regression that is not

already there in the other x’s. If we have exact collinearity, X ′X is singular; i.e.,

(X ′X)−1 does not exist. In this extreme situation, we can not compute β̂ uniquely.

NOTE : When the collinearity condition holds approximately; i.e., there exist constants

c0, c1, ..., cp (not all zero) such that

p∑
j=1

cjxj ≈ c0,

the regression variables are said to be approximately collinear.

REMARK : In regression, it is almost unheard of to have x’s that display no collinear-

ity (correlation). That is, the predictors are almost never orthogonal. However, even

the presence of approximate collinearity can be rather problematic. If the x’s are ap-

proximately collinear (but not perfectly collinear), (X ′X)−1 does exist, and we can still

compute β̂ uniquely; however, V (β̂j) will be very large, which makes the estimator β̂j

practically worthless. Why? Recall that V (β̂j) = sjjσ
2, where sjj = (X ′X)−1

j,j . If we

have approximate collinearity, the sjj term gets large; this, in turn, inflates V (β̂j). In

fact, it can be shown that

V (β̂j) = σ2

(
1

1−R2
j

)

︸ ︷︷ ︸
VIFj

{
n∑

i=1

(xij − x+j)
2

}−1

,

where R2
j is the coefficient of determination from the regression of xj on the other predic-

tors. The larger the degree of collinearity between xj and the other predictors, the larger
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R2
j becomes. As R2

j approaches one, V (β̂j) grows without bound. Thus, multicollinear-

ity, in general, can greatly inflate the variance of our least-squares regression estimators.

This, in turn, can have a large impact on the quality of the least-squares fit, and, hence,

will affect the precision of confidence intervals, hypothesis tests, predictions, etc.

WAYS TO MEASURE COLLINEARITY :

1. The simplest way to diagnose collinearity is to compute all pairwise sample corre-

lations among the predictors; that is, compute rjj′ , for all j 6= j′; j = 1, 2, ..., p.

This is not foolproof though, since some collinearities may involve three or more

predictors and any subset of two of them may not show collinearity.

2. Compute the variance inflation factor (VIF) defined as

VIFj =
1

1−R2
j

,

for j = 1, 2, ..., p. Values of VIFj larger than 10 or so indicate strong collinearity.

This measure, however, does not work well with categorical variables; in addition,

R2
j is sensitive to outliers.

3. Look at the eigenvalues of (a centered and scaled version of) X ′X matrix and form

the condition index. Belsley, Kuh, and Welsch (1980) argue that large values of

κ =

√
λmax

λmin

,

where λmax and λmin denote the largest and smallest eigenvalues of (a centered

and scaled version of) X ′X, respectively, suggest the presence of multicollinearity.

Rules declaring collinearity as a problem when κ ≥ 30 or κ ≥ 100 have been

proposed but have little theoretical justification. The κ statistic is motivated from

principle components analysis, a topic covered in our multivariate course.

Example 7.5 (cheese-2.sas). The variance inflation factors for the three predictors

ACETIC, H2S, and LACTIC, are 1.83, 1.99, and 1.94, respectively. These are not large

enough to cause great concern. The condition index is κ = 3.9154/0.0036 = 33.1342,

which does suggest a mild amount of collinearity.
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7.6 Criteria for choice of best model

In Chapter 6, I made the following statement:

The goal of any regression modelling problem should be to identify each of the

important predictors, and then find the smallest model that does the best job.

It is important to remember that we never get to know the “right” model for the data.

In fact, George Box, a famous statistician, once said, “All models are wrong; some are

useful.” However, there is nothing that says we can’t try to find the best model! In this

section, we investigate some commonly-used statistics used for model selection. No one

statistic should be used as a litmus test; instead, we should examine them all in making

an informed decision. In what follows, I will assume that we have a set of candidate

models that we are considering; again, our goal is to choose the best one.

THE COEFFICIENT OF DETERMINATION : As we have already seen, the coefficient

of determination is proportion of the total variation in the data explained by the model;

it is given by

R2 =
SS[R]

SS[TOT]
= 1− SS[E]

SS[TOT]
.

Intuitively, larger values of R2 suggest that the model is capturing more of the variability

in the data explained by the regression.

THE MEAN-SQUARED ERROR: The mean-squared error, MS[E], our unbiased estima-

tor of σ2, can also be used as a model-selection tool. A reasonable, and certainly simple,

plan is to choose the candidate model with the smallest MS[E].

NOTES ON R2 AND MS[E]:

• R2 can never decrease (and usually increases) by adding additional predictor

variables−even if these additional predictors, in no way, provide any additional ex-

planatory power! For example, the R2 for the larger model Y = β0 +β1x1 +β2x2 +ε

is always at least as large as the R2 for the smaller model Y = β0 + β1x1 + ε.
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• MS[E], on the other hand, is not always smaller for a larger model. It is true that

SS[E] is always smaller for a larger model, but so is the degrees of freedom value

n− p− 1. Thus, larger models don’t necessarily decrease MS[E].

• Even if R2 is higher and MS[E] is smaller for a particular candidate model, prob-

lems caused by multicollinearity may lead us to favour the smaller model. Also,

remember the Parsimony Principle; i.e., other things being equal, choose the

smaller model for simplicity’s sake.

ADJUSTED R2: The reason that R2 will always be larger for a larger model is that,

unlike MS[E], it is not penalised for decreasing n − p − 1 while increasing SS[R]. Thus,

for this reason, the use of R2 only as a statistic for discriminating among competing

models can be extremely hazardous! A modified version, the adjusted R2 addresses the

deficiency. Its value is given by

R
2

= 1− SS[E]/(n− p− 1)

SS[TOT]/(n− 1)
= 1− MS[E]

S2
Y

,

where S2
Y = SS[TOT]/(n − 1) is just the sample variance of Y1, Y2, ..., Yn. Note that,

holding all other things constant, as p increases, n − p − 1 decreases, and, thus, R
2

decreases. So, adding additional predictor variables does not necessarily increase R
2
.

NOTE : R
2
and MS[E] are not necessarily “prediction-oriented;” i.e., they are not directly

related to how good the model is for prediction purposes. Two well-known prediction-

oriented statistics are Press and Mallows’ Cp.

PRESS STATISTIC : Let Ŷi,−i denote the fitted value for the regression which excludes

the ith case; i.e., Ŷi,−i = x′iβ̂−i, where x′i is the ith row of X and β̂−i is the least-squares

estimator for β with the ith case removed. The quantity ei,−i = Yi− Ŷi,−i is called the ith

Press residual. Since we remove each observation, one at a time, the Press residuals are

true prediction errors with Ŷi,−i being independent of Yi. Ideally, one would want these

residuals to be small. The Press statistic amalgamates all n Press residuals together

in the following way:

Press =
n∑

i=1

e2
i,−i.
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Models with relatively low values of the Press statistic should be better than models with

high Press statistics. At first glance, your impression may be that we have to actually fit

all n regressions (one time for removing each observation). However, in the early 1970’s,

it was discovered that the sum of squared Press residuals could be calculated without

having to fit n regressions; in particular,

Press =
n∑

i=1

e2
i,−i =

n∑
i=1

(
ei

1− hii

)2

,

where hii is the corresponding diagonal element of the hat matrix M .

MALLOWS’ Cp: The basic principle behind this statistic is that it penalises the re-

searcher for overfitting (i.e., including too many unnecessary predictor variables) and

underfitting (not including the important predictors). To illustrate, suppose that we

have 6 predictor variables x1, x2, ..., x6, and that Y , in truth, follows the regression model

Y = β0 + β1x1 + β3x3 + β5x5 + ε. Of course, we do not get to know the true model in

practice. So, say that we fit the model Y = β0 + β1x1 + β3x3 + ε. In this situation, we

are underfitting. If we fit the full model with all 6 predictors, we are overfitting.

• If you underfit the model, the estimated regression coefficients and MS[E] will

be biased. In particular, MS[E] overestimates the true σ2 since we are ignoring

important predictors.

• If you overfit the model, it turns out that regression coefficients and MS[E] are still

unbiased estimators, but, you run the risk of inflated variances in the regression

coefficients due to collinearity.

Mallows’ Cp incorporates penalties for both the bias and inflated variances into one

statistic. Let MS[E]p denote the mean-squared error for a candidate model with p ≤ m

available predictors. Then, this candidate model’s Cp statistic is given by

Cp = (p + 1) +
(MS[E]p −MS[E]m)(n− p− 1)

MS[E]m
.

What are “good” values of Cp? Well, if the candidate model with p predictors is truly

correct, then both MS[E]m and MS[E]p estimate the same quantity; i.e., σ2. In this case,
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one can show that

E(Cp) = (p + 1) + E

{
(MS[E]p −MS[E]m)(n− p− 1)

MS[E]m

}

︸ ︷︷ ︸
≈ 0

≈ p + 1;

thus, values of Cp ≈ p + 1 are preferred. Those models with Cp much greater than p + 1

probably do not include the right combination of predictor variables (we are underfitting).

Of course, the full model with p = m predictors always has Cp = p + 1.

Example 7.6 (cheese-2.sas). We now compute the values of Press, R2, R
2
, MS[E],

and Cp for each of the seven possible models with the cheese data in Example 6.1. It

looks like the best model, based on these criteria, is the one that includes H2S and LACTIC

as predictors.

Number in Adjusted

Model PRESS R-Square R-Square MS[E] C(p) Variables in Model

1 3687.95 0.5712 0.5559 117.359 6.018 h2s

1 4375.64 0.4959 0.4779 137.946 11.635 lactic

1 6111.25 0.3020 0.2771 191.027 26.116 acetic

2 3135.38 0.6517 0.6259 98.849 2.005 h2s lactic

2 3877.49 0.5822 0.5512 118.579 7.195 acetic h2s

2 4535.47 0.5203 0.4847 136.150 11.818 acetic lactic

3 3402.17 0.6518 0.6116 102.630 4.0000 acetic h2s lactic

7.7 Sequential variable selection procedures

Best subset selection methods evaluate all the possible subsets of variables from a full

model and identify the best reduced regression models based on some criterion. Evalu-

ating all possible models is the most reasonable way to proceed in variable selection, but

the computational demands of evaluating every model may not be practical. For exam-

ple, if we have 8 predictor variables x1, x2, ..., x8, there are 28 = 256 models to consider!

There are three selection strategies that we will focus on: forward selection, backward

selection, and stepwise selection.
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FORWARD SELECTION :

• Start with a model that only includes an intercept.

• Consider all one-variable models. Select the one-variable model whose 1st variable

has the largest t ratio, as long as it is larger than some prespecified cutoff, say tc.

• Consider all the two-variable models obtained by adding a regression variable to

the selected one-variable model. Select the two-variable model whose 2nd variable

has the largest t ratio, as long as t ≥ tc.

• Continue this process (the next step would be to consider all three-variable models).

The process stops when no other variables can be added that have t ≥ tc.

Using this algorithm, the number of models to be fit is at most p(p+1)/2, which is much

less that 2p if p is large. A common cutoff point is tc = 2, because it provides an overall

rule that gives an approximate size α = 0.05 test for the importance of that regression

variable. Once a variable is added using this algorithm, it must stay in the model!

BACKWARD SELECTION :

• Start with the full regression model; i.e., the model that includes all p predictors.

• Consider eliminating one variable. Delete the variable with the smallest t ratio,

provided that it is smaller than some prespecified cutoff, say tc.

• Next, refit the p − 1 predictor variable model with this variable deleted. Then,

delete the variable with the smallest t ratio if t < tc.

• Continue this process. The process stops when no other variables can be deleted

that have t < tc.

Using this algorithm, the number of models to be fit is at most p − 1, which is much

less that 2p if p is large. Again, a common cutoff point is tc = 2 for the same reason

mentioned above.
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STEPWISE SELECTION :

• Same as the first three steps using forward selection.

• Now, consider deleting any variable with t < tc (it has to be the first variable added,

if any here). This is what makes stepwise selection different from forward selection

(a variable can actually be removed from the model).

• With the model from the last step (which may contain one or two variables at this

point), add the variable with the largest t ratio, as long as t ≥ tc.

• With the model from the last step (which may contain two or three variables at

this point), delete any variable with t < tc.

• Continue this process.

Example 7.7 (cheese-2.sas). Applying all three sequential strategies to the cheese

data from Example 6.1, we find that the two-variable model including H2S and LACTIC

is selected using all three stepwise procedures.

SOME COMMENTS ON STEPWISE PROCEDURES : There are some problems with

stepwise methods. First of all, it is not necessarily the case that you will arrive at the

same model using all three methods! Furthermore, stepwise methods can actually give

models that contain none of the variables that are in the best regressions! This is because

they handle one variable at a time. Also, influential observations can be problematic in

stepwise selections. Some statisticians argue that the models arrived at from stepwise

techniques depend almost exclusively on the individual observations and have little to do

with real-world effects. Variable selection should be viewed as an exploratory technique.

John Tukey, among others, has emphasised the difference between exploratory and

confirmatory analyses. Briefly, exploratory data analysis deals with situations in which

you trying to find out what is going on in a set of data. Confirmatory data analysis looks

at things like tests and confidence intervals. If you know what variables are important

beforehand, there is no need for any sequential procedures.
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8 Introduction to the General Linear Model

Complimentary reading from Rao: Chapter 12.

8.1 Introduction

We have talked a great deal about the one-way ANOVA and linear regression models. I

view this chapter as the “bridge” from our discussion of regression back to a discussion

of ANOVA. However, part of crossing this bridge will be realising that ANOVA and

regression models can be placed under a common umbrella. This is an important point

to remember for the remainder of the course.

THE GENERAL LINEAR MODEL: The model Yi = β0 +β1xi1 +β2xi2 + · · ·+βpxip + εi,

for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2), or, in matrix notation, Y = Xβ + ε, where

ε ∼ Nn(0, σ2In), is called a general linear model.

NOTE : The normality assumption really has nothing to do with Y = Xβ + ε being

classified as a general linear model. The important characteristics are that E(ε) = 0, so

that E(Y ) ∈ C(X), and that V (ε) = σ2In. The normality assumption is often appended

so that we can construct confidence intervals and tests for (estimable) parameters.

8.2 One-way ANOVA as a special case of regression

Recall that we can express our one-way ANOVA model using two parameterisations:

Means model: Yij = µi + εij

Effects model: Yij = µ + τi + εij,

for i = 1, 2, ..., t, j = 1, 2, ..., ni, where εij ∼ iid N (0, σ2). Each of these models may be

expressed in the form of Y = Xβ + ε. To help simplify the exposition, we will consider

the following example.
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Example 8.1 (fert.sas). Suppose we record wheat yields for 20 different plots, in a

one-way layout, with ni = 5, and t = 4 fertilizers (A, B, C, D). The data are:

Fertilizer Yields, Yij Y i+

A 60, 61, 59, 60, 60 Y 1+ = 60

B 62, 61, 60, 62, 60 Y 2+ = 61

C 63, 61, 61, 64, 66 Y 3+ = 63

D 62, 61, 63, 60, 64 Y 4+ = 62

The ANOVA table, from PROC GLM, is given by

Source df SS MS F

Fertilizer 3 25 9.333 3.92

Error 16 34 2.125

Total 19 59

MEANS MODEL: Consider our means model representation Yij = µi + εij, and note

that we can write

Y 20×1 =




Y11

Y12

...

Y45




, X20×4 =




15 05 05 05

05 15 05 05

05 05 15 05

05 05 05 15




, β4×1 =




µ1

µ2

µ3

µ4




,

and

ε20×1 =




ε11

ε12

...

ε45




,

where 15 is a 5× 1 column vector of ones and 05 is a 5× 1 column vector of zeros. Thus,

we have expressed the means model Yij = µi + εij in the form Y = Xβ + ε. As usual,

the least-squares estimator β̂ = (X ′X)−1X ′Y . Note that r(X) = 4; i.e., X is full rank;

thus, (X ′X)−1 exists, and β̂ can be computed uniquely.
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For the means model, straightforward calculations show that

X ′X =




5 0 0 0

0 5 0 0

0 0 5 0

0 0 0 5




, (X ′X)−1 =




1
5

0 0 0

0 1
5

0 0

0 0 1
5

0

0 0 0 1
5




, and X ′Y =




Y1+

Y2+

Y3+

Y4+




.

Thus, the least squares estimate of β for the fertilizer data is given by

β̂ = (X ′X)−1X ′Y =




1
5

0 0 0

0 1
5

0 0

0 0 1
5

0

0 0 0 1
5







Y1+

Y2+

Y3+

Y4+




=




Y 1+

Y 2+

Y 3+

Y 4+




=




60

61

63

62




.

This agrees with our conclusion from Chapter 2; namely, that µ̂i = Y i+, for i = 1, 2, 3, 4.

EFFECTS MODEL: Consider our effects model representation Yij = µ + τi + εij, and

note that we can write

Y 20×1 =




Y11

Y12

...

Y45




, X20×5 =




15 15 05 05 05

15 05 15 05 05

15 05 05 15 05

15 05 05 05 15




, β5×1 =




µ

τ1

τ2

τ3

τ4




,

and

ε20×1 =




ε11

ε12

...

ε45




,

where 15 is a 5×1 column vector of ones and 05 is a 5×1 column vector of zeros. Thus, we

have expressed the effects model Yij = µ+τi+εij in the form Y = Xβ+ε. As before with

the means model, we would like to estimate β. However, note that r(X) = 4 < 5 = p+1

(the sum of the last four columns of X equals the first column). That is, X is not of full

rank which means that (X ′X)−1 does not exist. Our estimator β̂ can not be computed

uniquely using the effects model parameterisation.

PAGE 178



CHAPTER 8 STAT 3601

SOLVING THE NORMAL EQUATIONS USING GENERALISED INVERSES : Let’s

go back and recall the normal equations

X ′Xβ = X ′Y .

The problem with the effects model is that (X ′X)−1 does not exist. On the surface, this

may sounds disastrous; however, we still can find a solution (there are potentially infi-

nitely many) for β̂ using a generalised inverse of X ′X. We have to remember, though,

that this solution is not unique (so the solution is, in a sense, rather arbitrary−but, re-

member how we appended those arbitrary side conditions in the one-way layout?). To

be specific, a solution is given by

β̂ = (X ′X)−X ′Y ,

where (X ′X)− is any generalised inverse of X ′X. Straightforward calculations show

that (for the generalised inverse that I chose)

X ′X =




20 5 5 5 5

5 5 0 0 0

5 0 5 0 0

5 0 0 5 0

5 0 0 0 5




, (X ′X)− =




0 0 0 0 0

0 1
5

0 0 0

0 0 1
5

0 0

0 0 0 1
5

0

0 0 0 0 1
5




, and X ′Y =




Y++

Y1+

Y2+

Y3+

Y4+




,

so that

β̂ = (X ′X)−X ′Y =




0 0 0 0 0

0 1
5

0 0 0

0 0 1
5

0 0

0 0 0 1
5

0

0 0 0 0 1
5







Y++

Y1+

Y2+

Y3+

Y4+




=




0

Y 1+

Y 2+

Y 3+

Y 4+




We see that this solution β̂ is the solution that corresponds to the one that uses the side

condition µ = 0. If I had used another generalised inverse of X ′X, I would have gotten a

different solution (that corresponds to some other suitable side condition). To illustrate,
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my solution with the fertilizer data from Example 8.1 is

β̂ =




0

Y 1+

Y 2+

Y 3+

Y 4+




=




0

60

61

63

62




.

However, SAS’s solution, which uses the side condition τ4 = 0 (so SAS is computing a

different generalised inverse of X ′X) is given by

β̂ =




Y 4+

Y 1+ − Y 4+

Y 2+ − Y 4+

Y 3+ − Y 4+

0




=




62

−2

−1

1

0




.

KEY POINT : That we obtain different solutions by using different generalised inverses

(X ′X)− is completely analogous to us obtaining different solutions using different side

conditions (recall Chapter 2). In fact, we are seeing the same phenomenon; it is just

being presented in a different way.

THE GOOD NEWS : In the light of our recent revisiting to the one-way layout model,

and the distracting computational anomalies that have resurfaced, the good news here is

that all estimable functions involving µ, τ1, τ2, τ3, and τ4 are uniquely estimated (as they

were back in Chapter 2), even though these parameters, when considered by themselves,

are not! Examples of estimable functions include µi = µ + τi and contrasts involving

µi. For example, using the fertilizer data from Example 8.1, what is the least squares

estimate of µ + τ1? τ3 − τ2? τ1 + τ4? (this last function is not estimable).

MORE GOOD NEWS : Regardless of which generalised inverse (X ′X)− is used (or,

equivalently, which side condition is used) to solve the normal equations, the ANOVA

table is not affected! In addition, the ANOVA table is the same for the means model as

it is for the effects model! Theoretically, this last note follows since C(X) is the same for

both the means and effects models in the one-way layout (verify!).

PAGE 180



CHAPTER 8 STAT 3601

A SAS SIDE NOTE : To impose the side condition τ4 = 0, essentially what SAS does to

fit the regression (i.e., the ANOVA) is to take the effects model X matrix and drop the

last column; i.e.,

X20×4 =




15 15 05 05

15 05 15 05

15 05 05 15

15 05 05 05




.

As you can see, this design matrix is now full rank, and thus β̂ = (X ′X)−1X ′Y can

now be computed uniquely again. In fact, for the fertilizer data, the solution is given by

β̂ = (62,−2,−1, 1, 0)′, as above. By writing out the model Y = Xβ + ε in non-matrix

notation, with the design matrix X as given above, we get the “regression-like” model

Yi = µ + τ1zi1 + τ2zi2 + τ3zi3 + εi,

for i = 1, 2, ..., 20, where

zi1 =





1, if the response is from treatment A

0, otherwise

zi2 =





1, if the response is from treatment B

0, otherwise

zi3 =





1, if the response is from treatment C

0, otherwise,

which is just a multiple linear regression model with µ, τ1, τ2, and τ3 playing the roles of

β0, β1, β2, and β3, respectively! The variables z1, z2, and z3 are sometimes called dummy

variables or indicator variables. They simply take on values of 0 and 1 to indicate

treatment group membership.

NOTE : In general, for a t-treatment one-way layout experiment, there is no need to

include any more than t − 1 indicator variables in the regression model. Including t

indicator variables leads to the overparameterised effects model, and we are left having to

deal with the computational anomalies that result (which are really not that prohibitive).

REALISATION : ANOVA is just a special case of regression with indicator variables!
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8.3 Regression models with indicator variables

In discussing multiple linear regression in Chapters 6 and 7, it was implicitly assumed

that our independent variables x1, x2, ..., xp were quantitative in nature. However, as

we have just seen, the multiple linear regression model is flexible enough to handle non-

quantitative (i.e., categorical) regression variables. This is accomplished through the

use of indicator variables. For example, suppose that Y = IQ score and z = gender. We

can study the effect of gender on IQ via the regression of Y on z; i.e., Yi = β0 +β1zi + εi,

where

zi =





1, if the ith subject is female

0, if the ith subject is male.

In this example, E(Yi) = β0 + β1 for the female subjects and E(Yi) = β0 for the male

subjects. Actually, fitting this regression and doing the t-test for H0 : β1 = 0 is equivalent

to the two-sample t test for the equality of two means (verify!). A slightly more elaborate

model is Yi = β0 +β1xi +β2zi + εi, where xi = years of college. In this model, we see that

there is a quantitative variable (years of college) and a categorical variable (gender).

PREVIEW : In this section, we will cover regression with categorical variables; in partic-

ular, we will discuss

1. one categorical variable with two levels (dichotomous)

2. one categorical variable with more than two levels (polytomous)

3. testing for equality of slopes and regression lines (using reduced-versus-full model

tests).

ONE DICHOTOMOUS VARIABLE : As in the gender-IQ example above, we have one

quantitative variable and one indicator variable. Testing H0 : β2 = 0 in the model

Yi = β0 + β1xi + β2zi + εi can help us assess whether or not there is a “gender effect.” If

H0 is rejected, this means that the straight-line relationship is different for the different

genders (i.e., there are really two parallel lines−one for each gender). If H0 is not rejected,

we have no reason to believe that there are really two different regression lines.
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Table 8.18: Teacher effectiveness data.

Males Females

Y x1 x2 x3 x4 Y x1 x2 x3 x4

489 81 151 45.50 43.61 410 69 125 59.00 55.66

423 68 156 46.45 44.69 569 57 131 31.75 63.97

507 80 165 76.50 54.57 425 77 141 80.50 45.32

467 107 149 55.50 43.27 344 81 122 75.50 46.67

340 43 134 49.40 49.21 324 19 141 49.00 41.21

524 129 163 72.00 49.96 505 53 152 49.35 43.83

488 139 159 86.20 53.05 235 77 141 60.75 41.61

445 88 135 64.00 49.51 501 76 132 41.25 64.57

388 99 141 44.15 39.57 600 65 157 50.75 42.41

Example 8.2 (teacher.sas). Eighteen student-teachers took part in an evaluation

program designed to measure teacher effectiveness. Nine male and nine female instructors

took part in the program. The response Y was a quantitative evaluation made on the

cooperating teacher. The (quantitative) regressor variables x1, x2, x3, and x4 were the

results of four different standardised tests given to each subject. The data are given in

Table 8.18. Since it was believed that all of x1, x2, x3, and x4 and gender were important

in describing Y (the evaluation score), the researchers decided to fit

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5zi + εi,

where

zi =





1, if the ith subject is female

0, if the ith subject is male.

The role of the categorical variable, gender, can be determined by testing H0 : β5 = 0

versus H1 : β5 6= 0. This test can be carried out using (a) a t test for β5, or (b) a partial

F test for β5 (recall the equivalence between t tests and partial F tests). Since X ′X

is large, let’s use SAS. Using the t test, we see that t = 1.11 (P = 0.2867), so there is

little evidence suggesting a difference between genders (of course, after adjusting for the

other predictors, not all of which look to be significant). Alternatively, the partial F test
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Table 8.19: Cleansing data for different polymers.

Polymer A Polymer B Polymer C

Y x Y x Y x

292 6.5 410 9.2 167 6.5

329 6.9 198 6.7 225 7.0

352 7.8 227 6.9 247 7.2

378 8.4 277 7.5 268 7.6

392 8.8 297 7.9 288 8.7

statistic is 1.24, which, of course, is not significant either. Recall that t2 = F (up to

rounding error) and how each statistic is computed. The t statistic is given by

t =
β̂5√

s55MS[E]
=

47.4865√
0.3758× 4827.294

= 1.11498,

and the partial F statistic is given by

F5 =
R(β5|β0, β1, β2, β3, β4)

MS[E]
=

6001.2

4827.294
= 1.24318.

Also, recall that

6001.2 = Partial SS for x5 = R(β5|β0, β1, β2, β3, β4) =
β̂2

5

s55

=
(47.4865)2

0.3758

(up to rounding error). Here, recall that s55 is the corresponding diagonal entry of the

(X ′X)−1 matrix.

ONE POLYTOMOUS VARIABLE : Frequently, there is the need to incorporate a cate-

gorical variable with more than two levels. The extension from dichotomous to polyto-

mous variables is straightforward. As we defined a single indicator variable for a dichoto-

mous predictor (like gender), we can create l − 1 indicator variables z1, z2, ..., zl−1 for a

polytomous predictor with l > 1 levels.

Example 8.3 (polymer.sas). An engineer is studying the effects of the pH for a cleans-

ing tank and polymer type on the amount of suspended solids in a coal cleansing system.

Data from the experiment are given in Table 8.19. Since the engineer believed that pH
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Figure 8.26: Amount of suspended material, as a function of pH, for three polymers.

and polymer type were both important in describing Y , the amount of suspended solids,

she initially considered the no-interaction model (this model assumes parallelism):

Yi = β0 + β1xi + β2zi1 + β3zi2 + εi,

where

zi1 =





1, if polymer A is used

0, otherwise,

and

zi2 =





1, if polymer B is used

0, otherwise.

From the model Yi = β0 + β1xi + β2zi1 + β3zi2 + εi, we can see that

E(Yi) =





(β0 + β2) + β1xi, if polymer A is used

(β0 + β3) + β1xi, if polymer B is used

β0 + β1xi, if polymer C is used,

so that the true regression function really is three parallel lines; one for each polymer.

Furthermore, the test of H0 : β2 = β3 = 0 allows us to assess whether or not there is
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a difference in the polymers (after adjusting for the pH level). Note that the test of

H0 : β2 = β3 = 0 is essentially the same as testing the reduced and full models:

H0 : Yi = β0 + β1xi + εi (reduced model)

H1 : Yi = β0 + β1xi + β2zi1 + β3zi2 + εi (full model).

The full model X matrix and β are given below. The submatrix X0, corresponding to

the reduced model, simply takes X and removes the last two columns; i.e.,

X =




1 6.5 1 0

1 6.9 1 0

1 7.8 1 0

1 8.4 1 0

1 8.8 1 0

1 9.2 0 1

1 6.7 0 1

1 6.9 0 1

1 7.5 0 1

1 7.9 0 1

1 6.5 0 0

1 7.0 0 0

1 7.2 0 0

1 7.6 0 0

1 8.7 0 0




X0 =




1 6.5

1 6.9

1 7.8

1 8.4

1 8.8

1 9.2

1 6.7

1 6.9

1 7.5

1 7.9

1 6.5

1 7.0

1 7.2

1 7.6

1 8.7




, and β =




β0

β1

β2

β3




.

We have a reduced-versus-full model testing situation here, and we know to base our

decision on whether or not the reduced model is adequate by examining the size of

SS[R]F − SS[R]R = Y ′(M −M 0)Y = R(β2, β3|β0, β1),

where M = X(X ′X)−1X ′ and M 0 = X0(X
′
0X0)

−1X ′
0. Recall that R(β2, β3|β0, β1) is

the additional sums of squares from the regression of Y on z1 and z2 (after regressing

on β0 and x). Also, R(β2, β3|β0, β1) = R(β2|β0, β1) + R(β3|β0, β1, β2) so we can compute

R(β2, β3|β0, β1) by looking at the sequential SS for z1 and z2 (after fitting β0 and x).
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ANALYSIS : From SAS, we compute R(β2|β0, β1) = 20407.666 and R(β3|β0, β1, β2) =

2035.206 so that R(β2, β3|β0, β1) = 20407.666 + 2035.206 = 22442.8723. Thus, the

reduced-versus-full model F test statistic for H0 versus H1 is given by

F =
R(β2, β3|β0, β1)/(dfeR − dfeF )

MS[E]F
=

22442.8723/2

519.681
= 21.593,

which is much larger than F2,11,0.05 = 3.982. Thus, the reduced model does not do as

well at describing these data as does the full model; that is, the relationship is better

described by 3 parallel lines (one for each polymer) rather than a single line. Note that

we have not concluded that a parallel-lines model is appropriate for these data; only that

it does a better job than a single regression line.

REGRESSION MODELS WITH INTERACTION : Instead of requiring equal slopes,

a more flexible model is one that allows for individual lines (planes) to have different

slopes. Regression lines (planes) with different slopes occurs when there is an interaction

between the quantitative and categorical predictors. Two variables (e.g., pH and polymer

type) are said to have an interaction effect on the response if the change in the expected

response that results from changing the level of one of variable depends on the level of

another variable.

Example 8.4 (polymer.sas). For the polymer data, instead of assuming the parallel-

lines regression model Yi = β0 + β1xi + β2zi1 + β3zi2 + εi, suppose that we consider the

interaction-regression model

Yi = β0 + β1xi + β2zi1 + β3zi2 + β4xizi1 + β5xizi2 + εi,

where, as before,

zi1 =





1, if polymer A is used

0, otherwise,

and

zi2 =





1, if polymer B is used

0, otherwise.

Interaction can be modelled nicely by adding the predictors xz1 and xz2, which are formed
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by multiplication. From the interaction model, we can see that

E(Yi) =





(β0 + β2) + (β1 + β4)xi, if polymer A is used

(β0 + β3) + (β1 + β5)xi, if polymer B is used

β0 + β1xi, if polymer C is used.

RECALL: We saw that that the parallel-lines model is better at describing the data than

a single-regression line. However, does the interaction model (which allows for lines with

different slopes and intercepts) do a better job than the parallel-lines model?

TESTING FOR COMMON SLOPES : To test for common slopes among the three

regression lines, we could test H0 : β4 = β5 = 0, or, equivalently, in a reduced-versus-full

model setup, test

H0 : Yi = β0 + β1xi + β2zi1 + β3zi2 + εi (reduced model)

H1 : Yi = β0 + β1xi + β2zi1 + β3zi2 + β4xizi1 + β5xizi2 + εi (full model).

The interaction model is the full model and the parallel-lines model is the reduced model.

Our full and reduced model design matrices are

X =




1 6.5 1 0 6.5 0

1 6.9 1 0 6.9 0

1 7.8 1 0 7.8 0

1 8.4 1 0 8.4 0

1 8.8 1 0 8.8 0

1 9.2 0 1 0 9.2

1 6.7 0 1 0 6.7

1 6.9 0 1 0 6.9

1 7.5 0 1 0 7.5

1 7.9 0 1 0 7.9

1 6.5 0 0 0 0

1 7.0 0 0 0 0

1 7.2 0 0 0 0

1 7.6 0 0 0 0

1 8.7 0 0 0 0




and X0 =




1 6.5 1 0

1 6.9 1 0

1 7.8 1 0

1 8.4 1 0

1 8.8 1 0

1 9.2 0 1

1 6.7 0 1

1 6.9 0 1

1 7.5 0 1

1 7.9 0 1

1 6.5 0 0

1 7.0 0 0

1 7.2 0 0

1 7.6 0 0

1 8.7 0 0




.
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To determine whether parallelism (reduced model) or interaction (full model) is more

supported by the data, all we need to do is examine the size of

SS[R]F − SS[R]R = Y ′(M −M 0)Y = R(β4, β5|β0, β1, β2, β3),

where M = X(X ′X)−1X ′ and M 0 = X0(X
′
0X0)

−1X ′
0. For this test, recall that

R(β4, β5|β0, β1, β2, β3) is the additional sums of squares from the regression of Y on xz1

and xz2 (after regressing on all other variables). If this quantity is large, this suggests

that the full model is better than the reduced model at describing the data.

ANALYSIS : We make this more concrete by constructing the reduced-versus-full model

F statistic. From SAS, we compute

F =
R(β4, β5|β0, β1, β2, β3)/(dfeR − dfeF )

MS[E]F
=

(2017.17633 + 1604.98851)/2

232.703
= 7.783,

which is larger than F2,9,0.05 = 4.256. Thus, we have enough evidence at the α = 0.05

level to conclude that the interaction model is better at describing these data than the

model which assumes parallelism. The P value for this test 0.0109.

TESTING FOR COMMON INTERCEPTS : Instead of testing for common slopes, we

might want to test whether or not there are common intercepts in the three regression

lines (this is sometimes called concurrent regression). From the interaction model

Yi = β0 + β1xi + β2zi1 + β3zi2 + β4xizi1 + β5xizi2 + εi, we can see, again, that

E(Yi) =





(β0 + β2) + (β1 + β4)xi, if polymer A is used

(β0 + β3) + (β1 + β5)xi, if polymer B is used

β0 + β1xi, if polymer C is used.

Thus, to test for common intercepts, we are basically assessing whether or not the hy-

pothesis H0 : β2 = β3 = 0 is supported by the data. Note that this test still allows

the slopes to be different. As you may be guessing by now, we can conduct this test by

posing it as a reduced-versus-full model test! Here, we can consider

H0 : Yi = β0 + β1xi + β4xizi1 + β5xizi2 + εi (reduced model)

H1 : Yi = β0 + β1xi + β2zi1 + β3zi2 + β4xizi1 + β5xizi2 + εi (full model),
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where the reduced model forces all intercepts to be the same and the full model does not.

The reduced and full model matrices X0 and X, respectively, for this test are given by

X =




1 6.5 1 0 6.5 0

1 6.9 1 0 6.9 0

1 7.8 1 0 7.8 0

1 8.4 1 0 8.4 0

1 8.8 1 0 8.8 0

1 9.2 0 1 0 9.2

1 6.7 0 1 0 6.7

1 6.9 0 1 0 6.9

1 7.5 0 1 0 7.5

1 7.9 0 1 0 7.9

1 6.5 0 0 0 0

1 7.0 0 0 0 0

1 7.2 0 0 0 0

1 7.6 0 0 0 0

1 8.7 0 0 0 0




X0 =




1 6.5 6.5 0

1 6.9 6.9 0

1 7.8 7.8 0

1 8.4 8.4 0

1 8.8 8.8 0

1 9.2 0 9.2

1 6.7 0 6.7

1 6.9 0 6.9

1 7.5 0 7.5

1 7.9 0 7.9

1 6.5 0 0

1 7.0 0 0

1 7.2 0 0

1 7.6 0 0

1 8.7 0 0




.

To determine whether common slopes (i.e., the reduced model) is supported by the data,

we need to examine the size of

SS[R]F − SS[R]R = Y ′(M −M 0)Y

where M = X(X ′X)−1X ′ and M 0 = X0(X
′
0X0)

−1X ′
0. Unfortunately, we can not get

Y ′(M −M 0)Y here using sequential SS (unless we change the order the predictors were

entered). This is not problematic because I can fit the reduced and full model regressions

and retrieve SS[R]R and SS[R]F from the ANOVA tables (on the next page).

ANALYSIS : From SAS, we compute Y ′(M−M 0)Y = SS[R]F−SS[R]R = 70164.07724−
65340.17632 = 4823.90104 so that

F =
Y ′(M −M 0)Y /(dfeR − dfeF )

MS[E]F
=

4823.90104/2

232.703
= 10.365,
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which is larger than F2,9,0.05 = 4.256. Thus, we have enough evidence at the α = 0.05

level to conclude that the common intercept model is not appropriate for these data.

Reduced Model: Common intercepts

Source DF SS MS F Pr > F

Model 3 65340.17632 21780.05877 34.63 <0.0001

Error 11 6918.22368 628.92943

Corrected Total 14 72258.40000

Full Model

Source DF SS MS F Pr > F

Model 5 70164.07724 14032.81545 60.30 <0.0001

Error 9 2094.32276 232.70253

Corrected Total 14 72258.40000

OVERALL CONCLUSION : We need the full model to completely describe the polymer

data; that is, the slopes and intercepts all vary. We have arrived at this conclusion

by systematically ruling out a straight-line model (for all three polymers combined), a

parallel-lines regression model, and a concurrent (common intercepts) model.

SUMMARY : We have discussed four different models for the polymer data:

Coincident: Yi = β0 + β1xi + εi

Common slope: Yi = β0 + β1xi + β2zi1 + β3zi2 + εi

Common intercept: Yi = β0 + β1xi + β4xizi1 + β5xizi2 + εi

Interaction (Full): Yi = β0 + β1xi + β2zi1 + β3zi2 + β4xizi1 + β5xizi2 + εi,

It is interesting to observe the hierarchical structure among these four models; in

particular,

• the first three are reduced models when compared to the full model.

• the first model is a reduced model when compared to the second and third models.

• the second and third models are not related.
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8.4 Analysis of covariance (ANCOVA)

Analysis of covariance incorporates one or more regression variables (i.e., covariates) into

an analysis of variance. For now, we will just focus on the one-way ANOVA model. Recall

that this model can be expressed as Yij = µ+ τi + εij, for i = 1, 2, ..., t and j = 1, 2, ..., ni,

where εij ∼ iid N (0, σ2). Before we proceed with ANCOVA models, I want to step back

and talk about the design assumptions which underpin the one-way ANOVA model.

RECALL: In the one-way ANOVA model, we are basically assuming a one-way classi-

fication; i.e., experimental units are thought to be “basically alike,” and the only way

units may be “classified” is with respect to which treatment they receive. In addition,

we require that experimental units are randomly assigned to treatments. We called this

complete randomisation, and we called this experimental design a completely ran-

domised design. When experimental units are thought to be “basically alike,” then the

experimental error only consists of the variation among the experimental units themselves

(that is, there are no other systematic sources of variation).

USING COVARIATES : In some applications, we may have access to one or more vari-

ables that provides extra information about each experimental unit (that is, information

beyond knowing only which treatment the unit received). These variables are sometimes

called covariates or concomitant variables. Clearly, if these variables are important

in describing Y , then we would be foolish not to use them. After all, including these

variables in our model could reduce the experimental error variance σ2. This, in turn,

could greatly sharpen the analysis because we are explaining more of the variation by

including the covariates. Of course, if the covariates are not important in describing Y ,

then there is no need to use them.

Example 8.5. Suppose that in Example 8.1, we recorded x, the nitrogen content (in

ppm) for each plot. In this case, we have access to extra information regarding each ex-

perimental unit (plot) beyond knowing only which fertilizer the plot received. If nitrogen

is important in describing the mean yield, then we should incorporate it somehow.
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USING COVARIATES VERSUS BLOCKING : In general, if, beforehand, we know that

experimental units (e.g., plots, rats, plants, etc.) are systematically different in some

way, then we should not use a completely randomised design. In this situation, it is

more appropriate to group the individuals into blocks, where, in each block, individuals

are “basically alike.” Treatments should then be assigned at random within each block

(this is sometimes called restricted randomisation). However, in many experimental

situations, covariate information is observed (or given to the statistician) after a complete

randomisation scheme has been set and the data have already been collected. So, in a

sense, ANCOVA, which incorporates this covariate information, can be thought of as a

“salvage effort.” Had we known about this extra information beforehand, we could have

designed the experiment to include it (in the form of blocking). If this information is

given after the fact, we are left asking ourselves simply if this information is helpful in

determining whether or not there are really differences among the treatments.

ANCOVA LINEAR MODEL: A model for the analysis of covariance is given by

Yij = µi + γ(xij − x++) + εij

= µ + τi + γ(xij − x++) + εij,

for i = 1, 2, ..., t, j = 1, 2, ..., ni, where εij ∼ iid N (0, σ2). Here, µi = µ + τi and x++ is

the overall mean of the xij’s. In this analysis of covariance model, the xij’s are assumed

to be fixed quantities whose values are not influenced by the treatments (since γ is the

same for each treatment). For this model, it can be shown (verify!) that

E(Y i+) = µ + τi + γ(xi+ − x++),

where xi+ = 1
ni

∑ni

j=1 xij, and that

E(Y ++) = µ.

This is an advantage to parameterising the ANCOVA model as above; namely, using the

centred value (xij − x++) in the model formulation ensures that E(Y ++) = µ.

THE GENERAL LINEAR MODEL: Either ANCOVA model (the means or effects ver-

sion) can be written in the general form Y = Xβ+ε. To see this, suppose that t = 3 and

PAGE 193



CHAPTER 8 STAT 3601

that n1 = n2 = n3 = 2. For the means model formulation Yij = µi + γ(xij − x++) + εij,

we have

Y =




Y11

Y12

Y21

Y22

Y31

Y32




, X =




1 0 0 x11 − x++

1 0 0 x12 − x++

0 1 0 x21 − x++

0 1 0 x22 − x++

0 0 1 x31 − x++

0 0 1 x32 − x++




, β =




µ1

µ2

µ3

γ




, and ε =




ε11

ε12

ε21

ε22

ε31

ε32




.

Since X is full rank (when at least one xij is different), we can compute the least squares

estimate β̂ uniquely. For the effects model formulation Yij = µ + τi + γ(xij − x++) + εij,

we have

Y =




Y11

Y12

Y21

Y22

Y31

Y32




, X =




1 1 0 0 x11 − x++

1 1 0 0 x12 − x++

1 0 1 0 x21 − x++

1 0 1 0 x22 − x++

1 0 0 1 x31 − x++

1 0 0 1 x32 − x++




, β =




µ

τ1

τ2

τ3

γ




, and ε =




ε11

ε12

ε21

ε22

ε31

ε32




.

Here, as we have seen with effects models, the design matrix X is not full rank. The

least squares estimate β̂ can not be computed without imposing a suitable side condition

(e.g.,
∑

i τi = 0, etc.).

IMPORTANT REALISATION : For now, it is important to note that the ANCOVA

model is just a special case of the general linear model Y = Xβ + ε.

Example 8.6 (pigs.sas). Each of 19 randomly selected pigs is assigned, at random,

to one of four diet regimes (A, B, C, and D). Note that complete randomisation is used.

Here, the individual pigs are the experimental units and the treatments are the diets.

The response variable, Y , is pig weight (lbs) after having been raised on the diets. In

addition to treatment assignment, we also have x, the initial weight of each pig, prior to

the experiment. The data are given in Table 8.20.
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Table 8.20: Pig weight gain data.

Diet A Diet B Diet C Diet D

Y x Y x Y x Y x

60.8 663.3 68.7 517.2 102.6 538.3 87.9 555.4

50.7 623.3 67.7 589.3 102.1 512.8 84.2 469.2

65.0 689.5 74.0 596.0 100.2 558.2 83.1 454.8

58.6 665.7 66.3 589.3 96.5 499.3 85.7 505.3

61.7 605.9 69.8 521.1 90.3 615.5

ANALYSIS : To start off, let’s ignore the covariate (initial weight) and just fit a one-way

ANOVA model Yij = µ+τi +εij. The ANOVA table and parameter estimates, from PROC

GLM, are given by

One-way ANOVA

Source df SS MS F

Diet 3 4433.035 1477.678 104.77

Error 15 211.554 14.104

Total 18 4644.589

Parameter Estimates

Intercept Estimate

Intercept 86.240 B

Diet A -26.780 B

Diet B -16.940 B

Diet C 14.110 B

Diet D 0.000 B

Based on this analysis (which ignores the initial weights), there looks to be a significant

difference among the four diets. The least squares estimates of µ + τ1, µ + τ2, µ + τ3,

and µ + τ4 are given by y1+ = 59.46 (i.e., 86.24−26.78), y2+ = 69.30, y3+ = 100.35,
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and y4+ = 86.24, respectively. These are sometimes called the unadjusted treatment

means because they do not account for the covariate (initial weight). Recall that in the

one-way ANOVA model, E(Y i+) = µ + τi = µi.

Example 8.7 (pigs.sas). For the pig data in Example 8.6, let’s use the initial weight

information in an ANCOVA model. From SAS, we compute

ANCOVA model

Source df SS MS F

Model 4 4487.167 1121.792 99.76

Error 14 157.423 11.244

Total 18 4644.589

Source df Type III SS MS F Pr>F

Diet 3 2825.215 941.738 83.75 <0.0001

Init 1 54.131 54.131 4.81 0.0456

PRELIMINARY OBSERVATIONS : First, note that the MS[E] from the ANCOVA model

is smaller than that for the ANOVA analysis. This suggests that initial weight describes

some of the experimental error from the ANOVA model which ignores initial weight. Is

the covariate (initial weight) statistically important in describing weight gain? We can

answer this question by noting that the F statistic associated with weight gain is large

enough at the α = 0.05 level (P = 0.0456). You should also note that the F ratio for

DIET is large. This suggests that, after adjusting for the initial weight covariate, there is

a significant difference among the diets; that is, one would reject H0 : µ1 = µ2 = µ3 = µ4.

TESTING THE SIGNIFICANCE OF THE COVARIATE : We discuss briefly the theory

for testing H0 : γ = 0 in the ANCOVA model. It may come as no shock to you that we

can test this hypothesis using a reduced-versus-full model testing setup! Consider the

reduced and full models

H0 : Yij = µi + εij (reduced model)

H1 : Yij = µi + γ(xij − x++) + εij (full model),
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and let M 0 and M denote the reduced and full model hat matrices. As usual, we base

our decision on the size of SS[R]F − SS[R]R = Y ′(M −M 0)Y , or equivalently, on the

size of

F =
Y ′(M −M 0)Y /1

MS[E]F
Note that Y ′(M −M 0)Y can also be computed by using the partial sums of squares

for γ. To illustrate using the pig weight-gain data, SAS gives Y ′(M − M 0)Y =

R(γ|µ1, µ2, µ3, µ4) = 54.131257 and MS[E]F = 11.244. The ratio of these two quanti-

ties is F = 4.81, which is given in the SAS output.

ADJUSTED TREATMENT MEANS : Recall that in the ANCOVA model,

E(Y i+) = µ + τi + γ(xi+ − x++).

Thus, in the ANCOVA model, the sample mean Y i+ estimates µi = µ+ τi plus the extra

term γ(xi+− x++). The extra term accounts for the fact that we are using the covariate

x in the model. In the light of this, we define the adjusted treatment mean to be

Adj. Y i+ = Y i+ − γ̂(xi+ − x++),

where γ̂ is the least-squares estimator of γ. As the unadjusted treatment mean Y i+ is

the least squares estimator of µ + τi = µi in the ANOVA model, the adjusted treatment

mean Adj. Y i+ is the least squares estimator of µ + τi = µi in the ANCOVA model.

Example 8.8 (pigs.sas). For the pig data in Example 8.6, we have x1+ = 649.54,

x2+ = 562.58, x3+ = 527.15, x4+ = 520.04, x++ = 566.81, and γ̂ = 0.0422 (from SAS).

Thus, the adjusted treatment means are given by

Adj. y1+ = 59.46− 0.0422(649.54− 566.81) = 55.97

Adj. y2+ = 69.30− 0.0422(562.58− 566.81) = 69.48

Adj. y3+ = 100.35− 0.0422(527.15− 566.81) = 102.02

Adj. y4+ = 86.24− 0.0422(520.04− 566.81) = 88.21.

As one can see, these are somewhat different from the unadjusted treatment means. This

suggests that the covariate (initial weight) does have an impact on the analysis. SAS

calls the adjusted treatment means “least-squares means,” or “LSMEANS,” for short.
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CONFIDENCE INTERVALS FOR µi: Denoting N =
∑

i ni, one can show that

σ2
Adj.Y i+

≡ V (Adj. Y i+) = σ2

[
1

ni

+
(xi+ − x++)2

Exx

]
,

where Exx =
∑t

i=1

∑ni

j=1(xij − xi+)2. An estimate of this variance is given by

σ̂2
Adj.Y i+

= MS[E]

[
1

ni

+
(xi+ − x++)2

Exx

]
,

where MS[E] is the mean-squared error from the ANCOVA model. A 100(1−α) percent

confidence interval for µi, based on the adjusted treatment mean Adj. Y i+, is given by

Adj. Y i+ ± tN−p−1,α/2 × σ̂Adj.Y i+
,

where N − p− 1 denotes the error degrees of freedom from the ANCOVA model fit. SAS

provides these confidence intervals on request.

Example 8.9 (pigs.sas). For the pig data in Example 8.6, confidence intervals for the

treatment means (using the adjusted estimates) are given in the following table:

Diet Gain LSMEAN 95% Confidence Limits

A 55.972 51.285 60.659

B 69.478 66.257 72.699

C 102.022 98.071 105.972

D 88.211 84.462 91.961

CONFIDENCE INTERVALS FOR PAIRWISE DIFFERENCES : Obtaining a confidence

interval for µi−µi′ can help us assess whether or not the treatment means µi and µi′ are

different. A natural point estimator for µi − µi′ , based on the ANCOVA model, is given

by

Adj. Y i+ − Adj. Y i′+ = (Y i+ − Y i′+)− γ̂(xi+ − xi′+).

It is not overly difficult to show that

σ2
Adj.Y i+−Adj.Y i′+

≡ V (Adj. Y i+ − Adj. Y i′+) = σ2

[
1

ni

+
1

ni′
+

(xi+ − xi′+)2

Exx

]
,
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where Exx =
∑t

i=1

∑ni

j=1(xij − xi+)2. An estimate of this variance is given by

σ̂2
Adj.Y i+−Adj.Y i′+

= MS[E]

[
1

ni

+
1

ni′
+

(xi+ − xi′+)2

Exx

]
,

where MS[E] is the mean-squared error from the ANCOVA model. Thus, a 100(1 − α)

percent confidence interval for µi − µi′ , based on the adjusted treatment means, is given

by

(Adj. Y i+ − Adj. Y i′+)± tN−p−1,α/2 × σ̂Adj.Y i+−Adj.Y i′+
,

where N − p− 1 denotes the error degrees of freedom from the ANCOVA model fit. SAS

provides these confidence intervals on request.

Example 8.10 (pigs.sas). For the pig data in Example 8.6, confidence intervals for

the pairwise differences of treatment means (using the adjusted estimates) are given in

the following table:

95% Confidence Limits for

i j Differences LSMean(i) - LSMean(j)

1 2 -13.506 -19.296 -7.715

1 3 -46.049 -53.029 -39.070

1 4 -32.239 -39.251 -25.227

2 3 -32.543 -37.584 -27.502

2 4 -18.733 -23.608 -13.858

3 4 13.810 8.976 18.643

REMARK : Just because we are discussing a different model (ANCOVA) doesn’t mean

that we still don’t have to worry about multiple comparisons! If we want to form simul-

taneous confidence intervals for all pairwise differences, then we need to adjust for

multiplicity by using an adjusted critical value instead of using tN−p−1,α/2. For pairwise

differences, I would use Tukey’s procedure (exactly how one would use it in the one-way

layout without covariates).

ANCOVA AS A SPECIAL CASE OF REGRESSION : It turns out that we can repa-

rameterise ANCOVA models to make them “look like” regression models. Consider the
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means version of our ANCOVA model Yij = µi + γ(xij − x++) + εij, for i = 1, 2, ..., t and

j = 1, 2, ..., ni and define

zij =





1, if ith individual receives treatment j

0, otherwise,

for j = 1, 2, ..., t and i = 1, 2, ..., N , where N =
∑

i ni denotes the total number of

observations. We can write the means version of our ANCOVA model as

Yi = β0 + β1zi1 + β2zi2 + · · ·+ βt−1zi(t−1) + γ(xi − x+) + εi,

for i = 1, 2, ..., N , where xi is the covariate value for individual i and x+ is the mean

of all of the covariate values. Likewise, the effects version of our ANCOVA model

Yij = µ + τi + γ(xij − x++) + εij, for i = 1, 2, ..., t and j = 1, 2, ..., ni, can be expressed as

Yi = β0 + β1zi1 + β2zi2 + · · ·+ βtzit + γ(xi − x+) + εi,

for i = 1, 2, ..., N , where xi and x+ are defined as above.

REPARAMETERISED MODELS : As you can see, in the means model reparameter-

isation Yi = β0 + β1zi1 + β2zi2 + · · · + βt−1zi(t−1) + γ(xi − x+) + εi, we have left

off the indicator variable zt (for the last treatment) because it is not needed. This

leads to a full-rank design matrix. In the effects model reparameterisation Yi =

β0 + β1zi1 + β2zi2 + · · · + βtzit + γ(xi − x+) + εi, the inclusion of the indicator vari-

able zt leads to a design matrix that is not full rank (verify!). All this means is that β̂

can not be computed uniquely.

IMPORTANT NOTE : Both the means and effects ANCOVA models, and their repara-

meterisations all have the same ANOVA tables! This follows because C(X) for all four

design matrices is the same. Thus, it doesn’t matter which parametrisation you use; the

analysis will always be the same.

REALISATION : We should see now that ANCOVA (with a single covariate) is really just

a special case of parallel-lines regression, where each line corresponds to the relationship

between Y and x for treatment i. Thus, all of the theory we developed for parallel-lines
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regression holds here in the ANCOVA setting as well. There is a subtle difference in

the interpretation. In a parallel-lines regression setting, we are primarily focused on the

relationship between Y and x, and the categorical variable z is used because we believe the

relationship between Y and x is different for different levels of z. In an ANCOVA setting,

we are interested in comparing the means of Y at the different levels of the treatment

indicator z; however, the covariate x is used because we believe that it sharpens the

analysis (i.e., it makes the comparison of the treatment means more precise).

ANCOVA MODEL: UNEQUAL SLOPES : A slight variant of our previous ANCOVA

regression model is one that allows for different slopes; i.e.,

Yij = µ + τi + γi(xij − x++) + εij,

for i = 1, 2, ..., t and j = 1, 2, ..., ni. This model may be appropriate when the treatments

and the covariates interact with each other. Even though we are allowing for different

slopes, this model still falls in the Y = Xβ + ε formulation! To illustrate this, suppose

that t = 3 and that n1 = n2 = n3 = 2. The design matrix X and parameter vector β,

for the unequal-slopes ANCOVA model, are given by

X =




1 1 0 0 x11 − x++ 0 0

1 1 0 0 x12 − x++ 0 0

1 0 1 0 0 x21 − x++ 0

1 0 1 0 0 x22 − x++ 0

1 0 0 1 0 0 x31 − x++

1 0 0 1 0 0 x32 − x++




and β =




µ

τ1

τ2

τ3

γ1

γ2

γ3




,

respectively. For the unequal-slopes ANCOVA model, the adjusted treatment mean

is given by

Adj. Y i+ = Y i+ − γ̂i(xi+ − x++),

where γ̂i is the least-squares estimator of γi. You will note that this is the same expression

for Adj. Y i+ as before, except that γ̂i replaces γ̂ (this change accommodates for the

unequal slopes).
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TESTING FOR HOMOGENEOUS SLOPES : In an ANCOVA setting, it is often of

interest to determine whether or not the slope coefficients are equal; that is, we would

like to test H0 : γ1 = γ2 = · · · = γt = γ. Here, H0 corresponds to the situation wherein

the treatments and covariate do not interact. To answer this question, we can perform

a reduced-versus-full model test! In this setting, our smaller model is the equal-slopes

version and the full model is the non-equal-slopes version; i.e.,

H0 : Yij = µ + τi + γ(xij − x++) + εij (reduced model)

H1 : Yij = µ + τi + γi(xij − x++) + εij (full model).

If we let M 0 and M denote the reduced and full model hat matrices, we know to base

our decision on the size of SS[R]F − SS[R]R = Y ′(M −M 0)Y , or equivalently, on the

size of

F =
Y ′(M −M 0)Y /(t− 1)

MS[E]F
Fortunately, fitting both models (i.e., the parallel-lines model and the non-parallel-lines

model) is easy using SAS so we can easily compute F .

Example 8.11 (pigs.sas). For the pig data in Example 8.6, we would like to determine

whether or not the treatments (diets) and the covariate (initial weight) interact. As noted

earlier, this corresponds to testing H0 : γ1 = γ2 = γ3 = γ4 = γ using a reduced-versus-full

model approach. Here are the two ANOVA tables:

ANCOVA: Full model

Source df SS MS F

Model 7 4502.569 643.22 99.76

Error 11 142.021 12.911

Total 18 4644.589

ANCOVA: Reduced Model

Source df SS MS F

Model 4 4487.167 1121.792 99.76

Error 14 157.423 11.244

Total 18 4644.589
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It is easy to compute Y ′(M−M 0)Y = SS[R]F−SS[R]R = 4502.569−4487.167 = 15.402.

Thus, the F statistic for this reduced-versus-full model test is given by

F =
Y ′(M −M 0)Y /(t− 1)

MS[E]F
=

15.402/(4− 1)

12.911
= 0.398.

This F is not large, so we would not reject H0. The smaller model which uses equal

slopes is appropriate for these data; that is, it doesn’t appear as though the diets and

initial weight interact.

REMARK : We have talked about the adjusted treatment means in the unequal slopes

ANCOVA model; i.e., Adj. Y i+ = Y i+ − γ̂i(xi+ − x++). Just as we did in the equal-

slopes ANCOVA model, it is possible to derive confidence intervals for µi and confidence

intervals for pairwise differences using Adj. Y i+ (the formulae change slightly from the

equal slopes case).

REMARK : It is also possible to include more than one covariate! For example, with

the pig experiment from Example 8.6, we could have used x1 = initial weight, x2 =

average body temperature, x3 = average heart rate, etc. The extension of the ANCOVA

formulation to handle multiple covariates is straightforward. Also, the use of covariates is

not limited to a one-way layout with the usual one-way ANOVA analysis. Covariates may

also be used in with other designs and treatment structures (e.g., randomised complete

block designs, factorial treatment structures, Latin square designs, etc.).

REMARK : As we have seen with the pig data in Example 8.6, the use of the covariate

(initial weight) can help sharpen the comparison among the different treatments (diets).

I can not overemphasise, however, the importance of thinking about covariates like initial

weight, and other possible covariates, before the experiment is designed and the data are

collected. This is an important way of thinking about the design of experiments;

namely, to identify all possible sources of variation beforehand, and then design the

experiment to incorporate these sources. As mentioned earlier, ANCOVA can be thought

of a “salvage effort.” I say this because, with the pig data, for example, had we identified

initial weight as a possible source of variation beforehand, we could have incorporated

that into the design by using initial weight as a blocking factor.
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9 Factorial Treatment Structures: Part I

Complimentary reading from Rao: Chapter 13.1-13.5.

Factorial treatment structures are simply an efficient way of defining treatments in

an experiment. They can be used in any of the standard experimental designs, such

as completely randomised designs (CRD), randomised complete block designs (RCBD),

Latin square designs, split-plot designs, etc. Up until now, we have discussed the notion of

complete randomisation (i.e., individuals are randomly assigned to treatments under

no restriction). Any design that uses complete randomisation is called a completely

randomised design. RCBD’s and split plot designs will be discussed later.

9.1 Introduction

To motivate the use of factorial treatment structures in experimental design, we will

consider the following example.

Example 9.1. The effect of alcohol and sleeping pills taken together is much greater than

one would suspect based on examining the effects of alcohol and sleeping pills separately.

Suppose that we did two experiments:

• one experiment involves 20 subjects to establish the effect of a normal dose of

alcohol.

• the other experiment involves 20 subjects to establish the effect of a normal dose

of sleeping pills.

Note that there are 40 subjects needed for the two experiments. When considering both,

a common fallacy is that the effect of taking a normal dose of both alcohol and sleeping

pills would be just the sum of the individual effects. Unfortunately, these two separate

experiments provide no basis for either accepting or rejecting such a conclusion.
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USING A FACTORIAL TREATMENT STRUCTURE : We can redesign the investiga-

tion to be more informative and efficient by using a factorial treatment structure.

• The alcohol experiment would involve 10 people getting no alcohol (a1) and 10

people getting a normal dose of alcohol (a2).

• The sleeping pill experiment would involve 10 people getting no sleeping pills (b1)

and 10 people getting a normal dose of sleeping pills (b2).

The two factors in this study are alcohol (A) and sleeping pills (B). Each factor has

two levels, no drug (a1 and b1, respectively) and normal dose (a2 and b2, respectively).

A factorial treatment structure uses treatments that are all combinations of the different

levels of the factors. A factorial experiment to study alcohol and sleeping pills may have

• 5 people given no alcohol and no sleeping pills (a1b1)

• 5 people given no alcohol but a normal dose of sleeping pills (a1b2)

• 5 people given a normal dose of alcohol but no sleeping pills (a2b1)

• 5 people given a normal dose of alcohol and a normal dose of sleeping pills (a2b2).

ADVANTAGES OF USING A FACTORIAL TREATMENT STRUCTURE : Assigning

treatments in this way has two major advantages:

1. A factorial treatment structure is more informative in that it provides evidence

about the effect of taking alcohol and sleeping pills together ; that is, it informs us

as to whether or not alcohol and sleeping pills interact. If the factors interact,

• the effect of alcohol depends on whether the person has taken sleeping pills

• the effect of sleeping pills depends on whether the person has taken alcohol.

Note that if the two factors interact, the separate experiments described earlier have

very little value.
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2. If the factors, in fact, do not interact, a factorial treatment structure is more

efficient. The two experiments use a total of 40 subjects, and the factorial exper-

iment uses 20 subjects. Yet, the factorial experiment contains the same amount of

information as the two experiments since:

• the effect of alcohol can be studied by contrasting the 5 a1b1 people with the

5 a2b1 people, and also by comparing the 5 a1b2 people with the 5 a2b2 people.

Thus, we have a total of 10 no alcohol people and 10 alcohol people, just as

we did in the separate experiment for alcohol.

• the effect of sleeping pills can be studied by contrasting the 5 a1b1 people

with the 5 a1b2 people, and also by comparing 5 a2b1 people with the 5 a2b2

people. Thus, we have a total of 10 no sleeping pills people and 10 sleeping

pills people, just as we did in the separate experiment for sleeping pills.

NOTATION : A useful notation for factorial experiments identifies the number of factors

and the number of levels of each factor. For example, the alcohol-sleeping pill study is

best described as a 2 × 2 factorial experiment, for a total of 4 treatments. If we had three

levels of alcohol and 4 doses (levels) of sleeping pills, we would have a 3 × 4 factorial,

for a total of 12 treatments. If we had another factor, say, diet (Factor C), with 3 levels

(and alcohol and sleeping pills had their original 2 levels), we would have a 2 × 2 × 3

factorial, for a total of 12 treatments.

IN GENERAL: The number of treatments in an a× b factorial experiment is ab, where a

is the number of levels of factor A, and b is the number of levels of factor B. The number

of treatments in an a× b× c factorial experiment is abc, and so on.

QUESTIONS OF INTEREST : Instead of just determining whether or not there are

differences among treatments, we now have the capability of investigating the effects

of the different factors (which make up the treatments). For example, we may want to

investigate whether or not (a) there is an effect due to alcohol, (b) there is an effect due

to sleeping pills, and/or (c) alcohol and sleeping pills interact.
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9.2 Factorial effects in 2× 2 experiments

Example 9.2 (corn.sas) Corn must have adequate, yet efficient, amounts of nitrogen

(A) and phosphorus (B) for profitable production and environmental concerns. In a

2 × 2 factorial experiment, two levels of nitrogen (a1 = 10 and a2 = 15) and two levels

of phospherous were used (b1 = 2 and b2 = 4). Applications of nitrogen and fertilizer

were measured in pounds per plot. Twenty small (quarter acre) plots were available for

experimentation, and the four treatment combinations a1b1, a1b2, a2b1, and a2b2 were

randomly assigned to plots. This is a completely randomised design with a 2×2 factorial

treatment structure. The response is Yijk, the yield (in pounds), after harvest, for the kth

plot receiving the ith level of nitrogen and the jth level of phosphorous. Here, i = 1, 2,

j = 1, 2, and k = 1, 2, ..., 5. Data from the experiment are given in Table 9.21.

Table 9.21: Corn yield data for nitrogen and phosphorous applications.

Treatment Combination Yijk Y ij+
∑5

k=1(Yijk − Y ij+)2

a1b1 35, 26, 25, 33, 31 30 76

a1b2 39, 33, 41, 31, 36 36 68

a2b1 37, 27, 35, 27, 34 32 88

a2b2 49, 39, 39, 47, 46 44 88

PRELIMINARY ANOVA: Consider the table of treatment totals:

b1 b2

a1 150 180

a2 160 220

NOTE : In a 2 × 2 factorial experiment, we really have 4 treatments; i.e., a1b1, a1b2,

a2b1, and a2b2. Thus, we can construct the ANOVA table treating this as a one-way

layout with four treatment means µ11, µ12, µ21, and µ22 (recall computing formulae from

Chapter 2). First, the correction term is given by

CM =
1

20
Y 2

+++ = 7102/20 = 25205.

PAGE 207



CHAPTER 9 STAT 3601

This helps us get the (corrected) total sum of squares; i.e.,

SS[TOT] = Y ′Y − CM

=
2∑

i=1

2∑
j=1

5∑

k=1

Y 2
ijk − CM

= 26100− 25205 = 895.

The treatment sums of squares is given by

SS[T] =
1

5

2∑
i=1

2∑
j=1

Y 2
ij+ − CM

=
1

5
(1502 + 1602 + 1802 + 2102)− 25205 = 575.

Thus, we get SS[E] by subtraction; i.e., SS[E] = SS[TOT] − SS[T] = 320. Also, note

that SS[E] =
∑2

i=1

∑2
j=1

∑5
k=1(Yijk−Y ij+)2 = 76 + 68 + 88 + 88 = 320, from Table 9.21.

Thus, viewing this as a one-way layout experiment with four treatments, our ANOVA

table becomes

Table 9.22: Analysis of variance: Corn data.

Source df SS MS F

Treatments 3 575 191.7 9.6

Error 16 320 20

Total 19 895

TEMPORARY CONCLUSION : Since our F statistic is large, e.g., F3,16,0.05 = 3.239, we

would conclude that at least one of the treatment means is different.

REMARK : As before, the overall F test provides very little information. However, with a

factorial treatment structure, it is possible to explore the data a little more; in particular,

we can assess whether or not there are effects due to nitrogen (Factor A), phosphorous

(Factor B) or an interaction between nitrogen and phosphorous. It turns out that, in

factorial experiments, these effects may be represented by contrasts.
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DIFFERENT TYPES OF EFFECTS : There are three types of effects in a factorial

experiment: (a) simple effects, (b) main effects, and (c) interaction effects. We now

examine each in the context of a 2×2 experiment. In what follows, we will assume factor

A has two levels a1 and a2 and factor B has two levels b1 and b2. Thus, there are really

four treatments, and, hence, four treatment means µ11, µ12, µ21, and µ22 (sometimes

these are called the cell means). As usual, we will assume that our response variable

Y follows a normal distribution with constant variance σ2 (so that we can construct F

statistics to test for the presence of main and interaction effects).

Table 9.23: Population means and simple effects in a 2× 2 factorial experiment.

Factor B Simple effect of B

Factor A b1 b2 µ[AiB]

a1 µ11 µ12 µ[A1B] = µ12 − µ11

a2 µ21 µ22 µ[A2B] = µ22 − µ21

Simple effect of A µ[AB1] = µ21 − µ11 µ[AB2] = µ22 − µ12

SIMPLE EFFECTS : In a 2×2 factorial experiment, there are four simple effects. The

simple effect of A, at level b1 of B, is defined as

µ[AB1] = µ21 − µ11.

In words, this simple effect is the change in mean (i.e., the expected response) when A

changes level and the level of B is held fixed at b1. Similarly, the simple effect of A, at

level b2 of B, is defined as

µ[AB2] = µ22 − µ12.

Simple effects µ[A1B] and µ[A2B] are defined analogously; i.e., µ[A1B] = µ12 − µ11 and

µ[A2B] = µ22 − µ21.

ESTIMATING SIMPLE EFFECTS : Estimates of the simple effects are obtained by

replacing µij with Y ij+; that is,

µ̂[AB1] = Y 21+ − Y 11+ µ̂[AB2] = Y 22+ − Y 12+

µ̂[A1B] = Y 12+ − Y 11+ µ̂[A2B] = Y 22+ − Y 21+.

PAGE 209



CHAPTER 9 STAT 3601

Table 9.24: Table of treatment means and simple effects estimates for the corn data.

b1 b2 Difference Factor B Means

a1 30 36 Y 12+ − Y 11+ = 6 Y 1++ = 33

a2 32 44 Y 22+ − Y 21+ = 12 Y 2++ = 38

Difference Y 21+ − Y 11+ = 2 Y 22+ − Y 12+ = 8

Factor A Means Y +1+ = 31 Y +2+ = 40

Example 9.2 (continued). With the corn data from Example 9.2, the simple effects

estimates are µ̂[AB1] = 2, µ̂[AB2] = 8, µ̂[A1B] = 6, and µ̂[A2B] = 12.

MAIN EFFECTS : In a 2× 2 factorial experiment, there are two main effects.

µ[A] =
1

2
(µ[AB1] + µ[AB2]) =

1

2
(µ21 − µ11 + µ22 − µ12)

µ[B] =
1

2
(µ[A1B] + µ[A2B]) =

1

2
(µ12 − µ11 + µ22 − µ21).

The main effect of A is the average change in the expected response when the level of

A is changed from a1 to a2. Likewise, the main effect of B is the average change in the

expected response when the level of B is changed from b1 to b2. Note that µ[A] and µ[B]

are just contrasts in µ11, µ12, µ21, and µ22.

ESTIMATING MAIN EFFECTS : Estimates of the main effects are obtained by replacing

µij with Y ij+; that is,

µ̂[A] =
1

2

(
µ̂[AB1] + µ̂[AB2]

)
=

1

2
(Y 21+ − Y 11+ + Y 22+ − Y 12+)

= Y 2++ − Y 1++

µ̂[B] =
1

2

(
µ̂[A1B] + µ̂[A2B]

)
=

1

2
(Y 12+ − Y 11+ + Y 22+ − Y 21+)

= Y +2+ − Y +1+.

Example 9.2 (continued). With the corn data from Example 9.2, the main effects

estimates are µ̂[A] = 5 and µ̂[B] = 9. What would you expect these estimates to be

“close to” if neither nitrogen nor phosphorous had an effect on yield?
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INTERACTION EFFECTS : If the difference in response between the levels of one factor

is not the same at all levels of the other factor, then we say the factors interact; thus,

in a 2× 2 factorial experiment, there is one (pairwise) interaction effect; i.e.,

µ[AB] =
1

2
(µ[AB2]− µ[AB1]) =

1

2
(µ[A2B]− µ[A1B])

=
1

2
(µ22 − µ12 − µ21 + µ11).

This effect measures differences between the simple effects of one factor at different levels

of another factor. Note that µ[AB] is a contrast in µ11, µ12, µ21, and µ22.

ESTIMATING THE INTERACTION EFFECT : The estimate of the interaction effect

is obtained by replacing µij with Y ij+; that is,

µ̂[AB] =
1

2

(
Y 22+ − Y 12+ − Y 21+ + Y 11+

)
.

Example 9.2 (continued). With the corn data from Example 9.2, the interaction effect

estimate is µ̂[AB] = 3. What would you expect this estimate to be “close to” if nitrogen

and phosphorous did not interact?

INTERACTION PLOTS : A nice graphical display to help us assess whether or not two

factors interact is an interaction plot. In such a plot, the levels of Factor A (say)

are marked on the horizontal axis. The sample means Y 11+, Y 12+, Y 21+, and Y 22+ are

plotted against the levels of A, and the points corresponding to the same level of Factor

B are joined by straight lines. The interaction plot for the corn data in Example 9.2

appears in Figure 9.27.

INTERPRETING INTERACTION PLOTS : When the interaction plot displays parallel

lines; i.e., the difference between the sample means is the same at a1 as the difference

between the sample means at a2, this suggests that there is no interaction between the

factors. Of course, perfect parallelism is a rarity in real problems. There is likely to be

some interaction suggested by the data, even if A and B truly do not interact. The key

question is whether or not the interaction term µ[AB] is significantly different from zero!

The interaction plot can be very helpful in visually assessing the degree of interaction.

See Figure 13.1 (p. 593, Rao) for some examples of interaction plots.
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Figure 9.27: Interaction plot for the corn data from Example 9.2.

MAIN AND INTERACTION EFFECTS AS CONTRASTS : In a 2× 2 factorial experi-

ment, we have four treatment means µ11, µ12, µ21, and µ22. If the experiment is balanced,

the main effects and interaction effect can be written as contrasts; that is,

µ[A] =
1

2
(µ21 − µ11 + µ22 − µ12)

µ[B] =
1

2
(µ12 − µ11 + µ22 − µ21).

µ[AB] =
1

2
(µ22 − µ12 − µ21 + µ11).

In addition, these are mutually orthogonal contrasts! See Table 9.25.

Table 9.25: Table of contrast coefficients for a 2× 2 factorial.

Effect c11 c12 c21 c22

µ[A] −1
2 −1

2
1
2

1
2

µ[B] −1
2

1
2 −1

2
1
2

µ[AB] 1
2 −1

2 −1
2

1
2
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PUNCHLINE : In a 2×2 (balanced) factorial experiment, we can “break down” the treat-

ment sum of squares SS[T] into the sums of squares for three orthogonal components;

namely, the sum of squares for the contrast µ[A], the sum of squares for the contrast µ[B],

and the sum of squares for the contrast µ[AB]. Let nij denote the number of replications

at the aibj treatment combination. By “balanced,” I mean that nij = n for all i and j.

Let N = n11 + n12 + n21 + n22 denote the number of observations observed. The general

form of the ANOVA in a 2× 2 factorial experiment looks like

Table 9.26: ANOVA table for the 2× 2 factorial experiment.

Source df SS MS F

A 1 SS[A] MS[A] FA = MS[A]
MS[E]

B 1 SS[B] MS[B] FB = MS[B]
MS[E]

AB 1 SS[AB] MS[AB] FAB = MS[AB]
MS[E]

Error N − 4 SS[E] MS[E]

Total N − 1 SS[TOT]

COMPUTING THE SUMS OF SQUARES : From Chapter 3, recall that the sum of

squares for a general contrast estimate θ̂ was given by

SS(θ̂) =
θ̂2

∑t
i=1

c2i
ni

.

We can use this definition to formulate the sums of squares for main effects and the inter-

action effect (these formulae are appropriate for balanced or unbalanced experiments):

SS[A] =
4(µ̂[A])2

1
n11

+ 1
n12

+ 1
n21

+ 1
n22

SS[B] =
4(µ̂[B])2

1
n11

+ 1
n12

+ 1
n21

+ 1
n22

SS[AB] =
4(µ̂[AB])2

1
n11

+ 1
n12

+ 1
n21

+ 1
n22

.

Example 9.2. (continued). We now compute the sums of squares for the main effects

and interaction effect. Recall that µ̂[A] = 5, µ̂[B] = 9, and µ̂[AB] = 3. Also, nij = 5 for
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all i and j. Thus,

SS[A] =
4(5)2

1
5

+ 1
5

+ 1
5

+ 1
5

= 125

SS[B] =
4(9)2

1
5

+ 1
5

+ 1
5

+ 1
5

= 405

SS[AB] =
4(3)2

1
5

+ 1
5

+ 1
5

+ 1
5

= 45.

REALISATION : Our ANOVA table that we obtained previously in Table 9.22, from

viewing this as a one-way layout with four treatments, can be expressed as

Source df SS MS F

A 1 125 125 6.25

B 1 405 405 20.25

AB 1 45 45 2.25

Error 16 320 20

Total 19 895

You will note that all we have done is broken down the treatment sums of squares SS[T]

from the one-way layout into orthogonal components; namely, the sums of squares for

A, B, and the interaction AB. In particular, note that SS[T] = SS[A] + SS[B] + SS[AB].

When the design is unbalanced, we lose orthogonality, but this general sum of squares

breakdown still holds (we’ll talk more about this later).

TESTING MAIN AND INTERACTION EFFECTS : For a general contrast θ, recall that

when H0 : θ = 0 is true, SS(θ̂)/σ2 ∼ χ2
1. Thus,

FA =
MS[A]

MS[E]
=

SS[A]/σ2

SS[E]
σ2 /(N − 4)

∼ F1,N−4,

FB =
MS[B]

MS[E]
=

SS[B]/σ2

SS[E]
σ2 /(N − 4)

∼ F1,N−4,

FAB =
MS[AB]

MS[E]
=

SS[AB]/σ2

SS[E]
σ2 /(N − 4)

∼ F1,N−4.

The F statistics FA, FB, and FAB can be used to test for main effects and an interaction

effect, respectively.

PAGE 214



CHAPTER 9 STAT 3601

GENERAL STRATEGY FOR A FACTORIAL ANALYSIS : The following strategies are

common when analysing data from 2× 2 factorial experiments. In fact, more generally,

these are common strategies when analysing data from a × b factorial experiments (I’ll

take this general approach, since the 2× 2 is just a special case).

• Start by looking at whether or not the interaction term µ[AB] is significantly dif-

ferent from zero. This is done by using FAB.

• If µ[AB] is significantly different from zero, then tests for main effects are

less meaningful because their interpretations depend on the interaction. In this

situation, the easiest approach is to just do the entire analysis as a one-way ANOVA

(recall Chapters 2 and 3) with ab treatments.

– In this case, you could get pairwise confidence intervals for all ab means. These

intervals could help you formulate an ordering among the ab treatment means.

In many experiments, it is of interest to find the “best treatment” (e.g., largest

yield, smallest time to recovery, etc).

– You could also look at various contrasts of the ab means that are of interest

to the researcher. In either situation (pairwise contrasts or other contrasts)

the methods of Chapter 3 apply.

• If µ[AB] is not significantly different from zero, then it is safe to test for

main effects (if you want to).

– Some recommend forming pairwise confidence intervals for the different means

of each factor. For example, in a 3× 4 factorial experiment, suppose that the

AB interaction was not significant. In this case, we could construct pairwise

intervals for the 3 A means and pairwise intervals for the 4 B means. This

may give us insight about where the differences truly are within each factor.

Of course, if a = b = 2, i.e., in a 2× 2 factorial experiment, then there is only

one pairwise interval for A and one for B.
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– Significant differences can also be found by using contrasts within each factor.

For example, in our 3× 4 experiment, I could compare the first two B means

to the last two B means (if this is of interest to the researcher). Again, non-

simple contrasts are only possible when a > 2 or b > 2.

• If the interaction term is not significant, should I go ahead and formally test for

main effects?

– Some statisticians wouldn’t even bother doing formal tests for main effects.

They would argue that forming pairwise intervals (or contrasts) are much

more informative than categorically saying “A is significant” or “A is not

significant.” If the pairwise intervals or contrasts show “no difference,” this

suggests that the factor is not significant (although it is theoretically possible

to not reject H0 : A not significant, but still find significant differences among

the means of levels of Factor A).

– In many applied areas, testing for main effects may be encouraged (for publi-

cation purposes, say). In this situation, one usually tests for main effects, and

then forms pairwise intervals (or contrasts) for means of the levels of main

effects which are significant.

– if the interaction is not significant, I usually glance at the main effects tests,

but I base the analysis largely on contrasts. It is often the case that the

researcher wants to know how the means within a factor are different.

REMARK : If the levels of a factor are quantitatively ordered, e.g., increasing doses of

a drug, increases concentrations of a chemical treatment, row spacings, times of applica-

tions, temperatures, etc., some statisticians argue that using means comparisons ignores

the logic of the treatment structure. That is, some feel that it is much more important to

look at the “dose-response” relationship. To do this, one could plot the response Y versus

the levels of a quantitatively-ordered factor and look for an equation that describes the

relationship (e.g., straight line, quadratic curve, etc). See Swallow (1984). Orthogonal

polynomial contrasts may also be useful here.
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Example 9.2. (continued). The interaction contrast µ[AB] is not significantly different

from zero since FAB = 2.25 < F1,16,0.05 = 4.453. Thus, it is safe to test for the main

effects due to nitrogen (A) and phosphorous (B). We see that both of the contrasts µ[A]

and µ[B] are significantly different from zero since FA = 6.25 and FB = 20.25 are both

large. Thus, nitrogen and phosphorous are both important in describing yield. Since

there are only 2 levels of each factor, there is one pairwise interval for µA2 −µA1 and one

pairwise interval for µB2 − µB1 (both of these intervals will not include zero since A and

B were significant). The intervals are given by

(Y 2++ − Y 1++)± tN−4,α/2

√
MS[E]

(
1

10
+

1

10

)

and

(Y +2+ − Y +1+)± tN−4,α/2

√
MS[E]

(
1

10
+

1

10

)
,

respectively. Note that there 10 observations for each treatment mean Y 1++, Y 2++, Y +1+,

and Y +2+. Here, we have y1++ = 33, y2++ = 38, y+1+ = 31, y+2+ = 40, MS[E] = 20, and

t16,0.025 = 2.1199. Thus, our intervals become

(38− 33)± 2.1199×
√

20×
(

1

10
+

1

10

)
⇐⇒ (0.76, 9.24)

and

(40− 31)± 2.1199×
√

20×
(

1

10
+

1

10

)
⇐⇒ (4.76, 13.24).

These intervals are much more informative than simply saying “A is significant” or “B is

significant.” It appears as though the high levels of each factor (nitrogen and phospho-

rous) correspond to a larger mean yield.

REMARK : For the corn data in Example 9.2, it does not appear as though there is

a significant interaction between nitrogen and phosphorous. However, had there been

a significant interaction, the above pairwise intervals are less meaningful because they

ignore the interaction effect. If a significant interaction was present, our follow-up analysis

could have involved constructing pairwise intervals for the four treatment means µ11,

µ12, µ21, and µ22.
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9.3 Analysing a× b factorial experiments

The method of analysing data from a 2 × 2 experiment can be easily extended to an

a × b experiment. Rao carries out this extension in Section 13.4 by generalising the

notion of simple, main, and interaction effects using the notation of Section 13.3. While

this extension is informative, I find it somewhat unnecessary. Instead, I prefer to take a

model-based approach, as in Section 13.5.

NOTATION : Let Yijk denote the kth response when Factor A is at the ith level; i =

1, 2, ..., a, and Factor B is at the jth level; j = 1, 2, ..., b. In general, let nij denote the

number of observations made on treatment aibj. We will assume, unless otherwise stated,

that the design is balanced; i.e., nij = n, for all i and j.

TWO-WAY ANOVA MODEL WITH INTERACTION : Data from a× b factorial exper-

iments can be modelled by a two-factor ANOVA model with interaction; i.e.,

Yijk = µ + αi + βj + (αβ)ij + εijk,

for i = 1, 2, ..., a, j = 1, 2, ..., b, and k = 1, 2, ..., n, where εijk ∼ iid N (0, σ2). Here,

µ denotes the overall mean (in the absence of any treatments), αi represents the effect

due to the ith level of A, βj represents the effect due to the jth level of B, and (αβ)ij

represents the interaction effect due to the ith and jth levels of A and B, respectively.

TESTS FOR MAIN EFFECTS AND INTERACTIONS : Taking a model-based approach

lends nicely to writing hypotheses for factorial effects. For example, to determine whether

or not there is an interaction effect, we can test

H0 : (αβ)ij = 0 for all i and j

versus

H1 : not H0.

Similarly, to determine whether or not there are main effects, one can test the hypothe-

ses H0 : α1 = α2 = · · · = αa = 0 and H0 : β1 = β2 = · · · = βb = 0.
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REVELATION : The two-factor model with interaction can be expressed in the form

Y = Xβ + ε. To help see this, suppose that a = 3, b = 2, and nij = n = 3. In matrix

terms, we write

Y =




Y111

Y112

Y113

Y121

Y122

Y123

Y211

Y212

Y213

Y221

Y222

Y223

Y311

Y312

Y313

Y321

Y322

Y323




, X =




1 1 0 0 1 0 1 0 0 0 0 0

1 1 0 0 1 0 1 0 0 0 0 0

1 1 0 0 1 0 1 0 0 0 0 0

1 1 0 0 0 1 0 1 0 0 0 0

1 1 0 0 0 1 0 1 0 0 0 0

1 1 0 0 0 1 0 1 0 0 0 0

1 0 1 0 1 0 0 0 1 0 0 0

1 0 1 0 1 0 0 0 1 0 0 0

1 0 1 0 1 0 0 0 1 0 0 0

1 0 1 0 0 1 0 0 0 1 0 0

1 0 1 0 0 1 0 0 0 1 0 0

1 0 1 0 0 1 0 0 0 1 0 0

1 0 0 1 1 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 0 0 1 0

1 0 0 1 0 1 0 0 0 0 0 1

1 0 0 1 0 1 0 0 0 0 0 1

1 0 0 1 0 1 0 0 0 0 0 1




, β =




µ

α1

α2

α3

β1

β2

(αβ)11

(αβ)12

(αβ)21

(αβ)12

(αβ)31

(αβ)32




,

and ε = (ε111, ε112, ..., ε323)
′. It is easy to see that X is not a full rank matrix. In fact,

r(X) = 6 < p = 12 (p is the number of parameters), so there is no hope in estimating β

uniquely. However, as before in one-way ANOVA model, we can always find a solution

to the normal equations; i.e.,

β̂ = (X ′X)−X ′Y ,

where (X ′X)− is any generalised inverse of X ′X. This solution is not unique (so the

solution is rather arbitrary). As you might suspect, we can find a unique solution if we

impose certain side conditions. Recall that in the one-way effects model, our design
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matrix X was rank deficient by one (see Chapter 8); in this situation, appending one side

condition did the trick; namely, this led to a unique solution to the normal equations.

Here, we are rank deficient by 6. Thus, to solve the normal equations uniquely with the

two-factor interaction model, we would need to append 6 side conditions! For commonly-

used side conditions in the two-factor model, see Equation 13.16, p. 621, Rao.

ARE SIDE CONDITIONS REALLY ALL THAT IMPORTANT? : Actually, I’m not

too big a fan of side conditions. Part of the reason why is that they are arbitrarily

chosen to uniquely solve the normal equations X ′Xβ = X ′Y . In a sense, they help us

solve a mathematical problem that isn’t relevant. The unimportant fact here is that all

12 parameters in the last model can not be uniquely estimated. What is important is

that there are certain functions of those 12 parameters that can be uniquely estimated,

regardless of which side conditions are used. These are the estimable functions, and

they are the only functions that we should be concerned with.

ANOVA TABLE FOR THE TWO WAY MODEL WITH INTERACTION : In the model

Yijk = µ + αi + βj + (αβ)ij + εijk,

for i = 1, 2, ..., a, j = 1, 2, ..., b, and k = 1, 2, ..., n, if we let µij = µ + αi + βj + (αβ)ij, we

can rewrite the two-factor model with interaction as a one-way ANOVA model

Yijk = µij + εijk,

with ab means. The ANOVA table for this one-way model (i.e., viewing this as a one-way

layout with ab cell means) is the same as it was from Chapter 2; i.e.,

Source df SS MS F

Treatments ab− 1 SS[T] MS[T] F = MS[T]
MS[E]

Error N − ab SS[E] MS[E]

Total N − 1 SS[TOT]

Here, N = abn, the total number of observations. The key point to realise is that we can

break up the treatment sums of squares SS[T] into components for the main effect of A,
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Table 9.27: ANOVA table for the a× b factorial experiment.

Source df SS MS F

A a− 1 SS[A] MS[A] FA = MS[A]
MS[E]

B b− 1 SS[B] MS[B] FB = MS[B]
MS[E]

AB (a− 1)(b− 1) SS[AB] MS[AB] FAB = MS[AB]
MS[E]

Error N − ab SS[E] MS[E]

Total N − 1 SS[TOT]

the main effect of B, and the interaction term AB. In general, this breakdown gives rise

to the ANOVA table for the two-way model with interaction; this table is Table 9.27.

BREAKING UP THE TREATMENT SUMS OF SQUARES : The first key equality is

a∑
i=1

b∑
j=1

n∑

k=1

(Yijk − Y +++)2

︸ ︷︷ ︸
SS[TOT]

= n
a∑

i=1

b∑
j=1

(Y ij+ − Y +++)2

︸ ︷︷ ︸
SS[T]

+
a∑

i=1

b∑
j=1

n∑

k=1

(Yijk − Y ij+)2

︸ ︷︷ ︸
SS[E]

,

which really is nothing new; it is a straightforward extension of the ubiquitous equality

SS[TOT] = SS[T] + SS[E], from Chapter 2. The second key equality is that

n

a∑
i=1

b∑
j=1

(Y ij+ − Y +++)2

︸ ︷︷ ︸
SS[T]

= bn

a∑
i=1

(Y i++ − Y +++)2

︸ ︷︷ ︸
SS[A]

+ an

b∑
j=1

(Y +j+ − Y +++)2

︸ ︷︷ ︸
SS[B]

+ n

a∑
i=1

b∑
j=1

(Y ij+ − Y i++ − Y +j+ + Y +++)2

︸ ︷︷ ︸
SS[AB]

.

This equality looks rather daunting, but it is really nothing to get too worked up over.

The important fact illustrated here is that we are breaking up the treatment sums of

squares SS[T] into components for the main effect of A, the main effect of B, and the

interaction term AB. You should also note that the degrees of freedom for treatments

ab− 1 = (a− 1) + (b− 1) + (a− 1)(b− 1), which is the breakdown for degrees of freedom

for A, B, and AB in Table 9.27.
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TESTING MAIN AND INTERACTION EFFECTS : As in the 2×2 factorial experiment,

we can test for main and interaction effects in a × b experiments by using F statistics.

In particular, the statistic

FA =
MS[A]

MS[E]
∼ Fa−1,N−ab.

is used to test H0 : α1 = α2 = · · · = αa = 0 (no A main effect) versus H1 : not H0. The

statistic

FB =
MS[B]

MS[E]
∼ Fb−1,N−ab,

is used to test H0 : β1 = β2 = · · · = βb = 0 (no B main effect) versus H1 : not H0.

Finally, the statistic

FAB =
MS[AB]

MS[E]
∼ F(a−1)(b−1),N−ab.

is used to test H0 : (αβ)ij = 0 for all i and j (no interaction) versus H1 : not H0.

HAND COMPUTATIONS FOR TWO-WAY ANOVA WITH INTERACTION : These

formulae make it easier to do computations by hand. First, find the correction term

for the mean (i.e., for fitting the overall mean µ); this is given by

CM =
1

N
Y 2

+++,

where N = abn. The total sum of squares, along with those for the main effects and

interaction A, B, and AB, respectively, are given by

SS[TOT] =
a∑

i=1

b∑
j=1

n∑

k=1

Y 2
ijk − CM

SS[A] =
1

bn

a∑
i=1

Y 2
i++ − CM

SS[B] =
1

an

b∑
j=1

Y 2
+j+ − CM

SS[AB] =

(
1

n

a∑
i=1

b∑
j=1

Y 2
ij+ − CM

)
− SS[A]− SS[B]

SS[E] = SS[TOT]− SS[A]− SS[B]− SS[AB].

The error sum of squares can be found by subtraction. As you can see, hand computation

becomes simple if we just have totals like Yi++, Y+j+, Yij+, and Y+++.
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Example 9.3 (battery.sas). An engineer is designing a battery for use in a device

that will be subjected to extreme variations in temperature. He has three material types

(Factor A) for the battery and plans to set the levels of temperature (Factor B) at 15,

70, and 125 degrees Celcius (note that these levels are quantitatively ordered). Four

batteries are randomly assigned to each combination of material and temperature, and

all 36 observations (3 × 3 × 4) are run in a random order. Here, a = 3, b = 3, and

n = 4. This is a completely randomised design with a 3× 3 factorial treatment structure.

The data from the experiment are in Table 9.28. The response is Y , the effective life (in

hours) observed for each battery.

Table 9.28: Life data (in hours) for the battery design experiment.

Temperature (B)

Material Type (A) 15 70 125 yi++

1 130 155 34 40 20 70 998

74 180 80 75 82 58

2 150 188 136 122 25 70 1300

159 126 106 115 58 45

3 138 110 174 120 96 104 1501

168 160 150 139 82 60

y+j+ 1738 1291 770 y+++ = 3799

CALCULATIONS : First, the correction term for the mean is given by

CM =
1

N
Y 2

+++ =
1

36
(3799)2.

The total sum of squares is given by

SS[TOT] = (130)2 + (155)2 + (74)2 + · · ·+ (60)2 − 1

36
(3799)2 = 77646.97.

The sum of squares for the main effects are

SS[A] =
1

3(4)

[
(998)2 + (1300)2 + (1501)2

]− 1

36
(3799)2 = 10683.72
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and

SS[B] =
1

3(4)

[
(1738)2 + (1291)2 + (770)2

]− 1

36
(3799)2 = 39118.72.

To compute the interaction sum of squares, note that

1

n

a∑
i=1

b∑
j=1

Y 2
ij+ − CM =

1

4

[
(539)2 + (229)2 + · · ·+ (342)2

]− 1

36
(3799)2 = 59416.22.

Thus,

SS[AB] = 59416.22− 10683.72︸ ︷︷ ︸
SS[A]

− 39118.72︸ ︷︷ ︸
SS[B]

= 9613.78.

Finally, the error sum of squares is obtained by subtraction; i.e.,

SS[E] = 77646.97− 10683.72− 39118.72− 9613.78 = 18230.75.

ANALYSIS : Table 9.29 shows the ANOVA table for the battery life data. As in 2 × 2

factorial experiments, the first thing to check (i.e., test) is the interaction effect; that is,

we want to first test H0 : (αβ)ij = 0 for all i and j (no interaction). Here, we would

reject H0 since FAB = 3.56 is large enough (F4,27,0.05 ≈ 2.73). Thus, these data display

a significant interaction between material type and temperature. This is not surprising

because the interaction plot in Figure 9.28 shows a large departure from parallelism.

Since significant interaction is present, we should be careful about interpreting the main

effects tests (some recommend not to even perform these tests).

Table 9.29: ANOVA table for the battery life data in Example 9.3.

Source df SS MS F

Material 2 10683.72 5341.86 7.91

Temperature 2 39118.72 19558.36 28.97

M*T 4 9613.78 2403.44 3.56

Error 27 18230.75 675.21

Total 35 77646.97

ANALYSIS : Since we have a significant interaction effect, comparisons among the means

of one factor (e.g., material type) are likely to be obscured by the interaction. In this

situation, it would be perfectly acceptable to (this is not an exhaustive list of possibilities):
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Figure 9.28: Interaction plot for the battery data from Example 9.3.

1. treat this as a one-way ANOVA with 3× 3 = 9 treatments, and proceed as we did

in Chapter 3 with contrasts among these 9 means (e.g., form all pairwise intervals).

2. compare the means of material type at a fixed level of temperature.

3. use orthogonal contrasts to test for linear and quadratic effects of temperature at

a fixed level of material type.

4. fit a regression equation that describes effective life (Y ) as a function of temperature

at a fixed level of material type.

FORMING ALL PAIRWISE INTERVALS : A perfectly acceptable approach to analysing

treatment differences in the presence of interaction is to form pairwise intervals for all

treatment means. Of course, with t = 9 treatments, we have
(
9
2

)
= 36 pairwise intervals!

Since we are exploring the data for differences, we can construct Tukey confidence in-

tervals (remember that we must adjust for multiplicity since there are many confidence

intervals). For the battery data, these intervals are in Table 9.30.
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Table 9.30: Battery data: Tukey confidence intervals for all 36 pairwise means.

Difference Estimate Std.Error Lower Bound Upper Bound

a1.b1-a1.b2 77.50 18.4 15.70 139.00 ****

a1.b1-a1.b3 77.30 18.4 15.40 139.00 ****

a1.b1-a2.b1 -21.00 18.4 -82.80 40.80

a1.b1-a2.b2 15.00 18.4 -46.80 76.80

a1.b1-a3.b2 -11.00 18.4 -72.80 50.80

a1.b1-a2.b3 85.30 18.4 23.40 147.00 ****

a1.b1-a3.b1 -9.25 18.4 -71.10 52.60

a1.b1-a3.b3 49.30 18.4 -12.60 111.00

a1.b2-a1.b3 -0.25 18.4 -62.10 61.60

a1.b2-a2.b1 -98.50 18.4 -160.00 -36.70 ****

a1.b2-a2.b2 -62.50 18.4 -124.00 -0.67 ****

a1.b2-a3.b2 -88.50 18.4 -150.00 -26.70 ****

a1.b2-a2.b3 7.75 18.4 -54.10 69.60

a1.b2-a3.b1 -86.80 18.4 -149.00 -24.90 ****

a1.b2-a3.b3 -28.20 18.4 -90.10 33.60

a1.b3-a2.b1 -98.30 18.4 -160.00 -36.40 ****

a1.b3-a2.b2 -62.30 18.4 -124.00 -0.42 ****

a1.b3-a3.b2 -88.30 18.4 -150.00 -26.40 ****

a1.b3-a2.b3 8.00 18.4 -53.80 69.80

a1.b3-a3.b1 -86.50 18.4 -148.00 -24.70 ****

a1.b3-a3.b3 -28.00 18.4 -89.80 33.80

a2.b1-a2.b2 36.00 18.4 -25.80 97.80

a2.b1-a3.b2 10.00 18.4 -51.80 71.80

a2.b1-a2.b3 106.00 18.4 44.40 168.00 ****

a2.b1-a3.b1 11.80 18.4 -50.10 73.60

a2.b1-a3.b3 70.30 18.4 8.43 132.00 ****

a2.b2-a3.b2 -26.00 18.4 -87.80 35.80

a2.b2-a2.b3 70.20 18.4 8.43 132.00 ****

a2.b2-a3.b1 -24.30 18.4 -86.10 37.60

a2.b2-a3.b3 34.30 18.4 -27.60 96.10

a3.b2-a2.b3 96.20 18.4 34.40 158.00 ****

a3.b2-a3.b1 1.75 18.4 -60.10 63.60

a3.b2-a3.b3 60.30 18.4 -1.57 122.00

a2.b3-a3.b1 -94.50 18.4 -156.00 -32.70 ****

a2.b3-a3.b3 -36.00 18.4 -97.80 25.80

a3.b1-a3.b3 58.50 18.4 -3.32 120.00
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For example, the confidence interval for µ11−µ12 (i.e., the first one in Table 9.30) is given

by

(Y 11+ − Y 12+)± q9,27,0.05︸ ︷︷ ︸
≈ 4.76

√
MS[E]

4
⇐⇒ (15.70, 139.00).

The table of treatment means Y ij+ for the battery life data is given by

b1 b2 b3

a1 134.75 57.25 57.50

a2 155.75 113.75 49.50

a3 144.00 145.75 85.50

From this table, the highest sample treatment means (in descending order) correspond

to the treatments a2b1 > a3b2 > a3b1 > a1b1 > a2b2 > a3b3. From Table 9.30, the top five

treatment means are not significantly different. In addition, the bottom five treatment

means are not significantly different. However, the a2b1 treatment mean is significantly

different from a3b3. Overall, it appears that the mean lifetime is largest at the lowest

level of temperature (i.e., b1 = 15 degrees). In addition, battery lifetimes seem to decline

in higher temperatures. The only violation to this last point comes with material type

3; however, the a3b1 and a3b2 means are not significantly different.

REMARK : You should remember that, with a large number of treatments (9), the Tukey

procedure is going to be very conservative since it controls the experimentwise error. It

offers too much protection against Type I Errors (claiming that differences are not real)

that it is difficult to find any treatment differences, and Type II Errors (failing to detect

real differences) become too likely.

COMPARING MEANS AMONG MATERIAL TYPES AT A FIXED TEMPERATURE

LEVEL: Since we have a significant interaction between material type (A) and tempera-

ture (B), comparing the means of one factor should be done separately for each level of

the other factor (not doing this would produce results that are obscured by the signifi-

cant interaction). We now illustrate how to compare the material type means at fixed

temperature levels.
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DETAILS : To make pairwise comparisons among material type means for a fixed level

of temperature, we have to first do a little algebra. Fortunately, the calculations are not

too difficult. Recall our two-way ANOVA model for the battery data; i.e.,

Yijk = µ + αi + βj + (αβ)ij + εijk,

for i = 1, 2, 3, j = 1, 2, 3, and k = 1, 2, 3, 4, where εijk ∼ iid N (0, σ2). First, let’s fix the

temperature at the lowest level; i.e., b1 = 15, and compare the means of a1b1, a2b1, and

a3b1. To compare the a1b1 and a2b1 means, we can construct a confidence interval for

µ11 − µ21. Using Y 11+ − Y 21+ as a point estimator for µ11 − µ21, we see that (verify!)

E(Y 11+ − Y 21+) = (α1 − α2) + [(αβ)11 − (αβ)21]︸ ︷︷ ︸
µ11−µ21

and

V (Y 11+ − Y 21+) =
2σ2

4
.

Furthermore, Y 11+ − Y 21+ is normally distributed since it is a linear combination of the

Yijks. Thus, a 95 percent confidence interval for µ11 − µ21 would be

(Y 11+ − Y 21+)± t27,0.025

√
2MS[E]

4
.

Confidence intervals for µ11 − µ31 and µ21 − µ31 are formed similarly (verify!); however,

these three intervals, when viewed jointly, would not be adjusted for multiplicity. Si-

multaneous 95 percent Tukey confidence intervals for µ11−µ21, µ11−µ31, and µ21−µ31

are given by

(Y 11+ − Y 21+)± q3,27,0.05

√
MS[E]

4
,

(Y 11+ − Y 31+)± q3,27,0.05

√
MS[E]

4
,

and

(Y 21+ − Y 31+)± q3,27,0.05

√
MS[E]

4

(the
√

2 term is absorbed into q3,27,0.05). Pairwise intervals for material type means at

fixed temperature levels b2 and b3 could be formed analogously.
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CONTRASTS FOR TRENDS : Recall that the sum of squares for treatments can be

broken up into the sum of squares for orthogonal contrasts. There are special contrasts

called orthogonal polynomial contrasts, because, in balanced designs, they reproduce

the sum of squares for treatments for comparing different polynomial regression models.

The use of such contrasts is only appropriate when the factor of interest is quantitative

with equally spaced levels; e.g. doses, temperatures, percentages, etc. If levels are not

equally spaced, then these polynomial contrasts are not too useful.

APPLICATION : For the battery data, we have a quantitative factor; i.e., temperature;

furthermore, it is at equally spaced levels (b1 = 15, b2 = 70, and b3 = 125 degrees).

There are three levels of temperature, so, for each material type (we should consider

each material type separately since there is significant interaction; i.e., the battery life

response to temperature depends on which material type is used), we can construct linear

and quadratic contrasts; these contrasts examine whether or not there are significant

linear and quadratic trends across the levels of temperature. For material type 1 (see

Figure 9.29), the following contrasts can be used to test for linear and quadratic trends:

Linear effect: −Y 11+ + Y 13+

Quadratic effect: Y 11+ − 2Y 12+ + Y 13+.

One will note that these contrasts have contrast coefficients

Effect c1 c2 c3

Linear −1 0 1

Quadratic 1 −2 1

Tables giving linear, quadratic, cubic, and higher order orthogonal polynomial contrasts

are widely available (surprisingly not in Rao). Note that (verify!)

E(−Y 11+ + Y 13+) = (−β1 + β3) + [−(αβ)11 + (αβ)13]

E(Y 11+ − 2Y 12+ + Y 13+) = (β1 − 2β2 + β3) + [(αβ)11 − 2(αβ)12 + (αβ)13].

The calculations not only show us exactly what we are estimating, but they also help us

with coding these effects so that we can test them in SAS.
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Figure 9.29: Lifetime versus temperature for Material Type 1.

SAS COMMANDS : Here is the SAS code to analyse linear and quadratic effects in

temperature for material type 1 (see our last calculations):

model life = mat temp mat*temp;

contrast ’linear-for-mat1’ temp -1 0 1 mat*temp -1 0 1 0 0 0 0 0 0;

contrast ’quadratic-for-mat1’ temp 1 -2 1 mat*temp 1 -2 1 0 0 0 0 0 0;

ANALYSIS : The SAS output for testing linear and quadratic effects in temperature, for

material type 1 only, is shown:

Contrast DF Contrast SS Mean Square F Pr > F

linear-for-mat1 1 11935.125 11935.125 17.68 0.0003

quadratic-for-mat1 1 4030.042 4030.042 5.97 0.0214

There are significant linear and quadratic trends in temperature for material type 1. Had

these contrasts been preplanned, we can make these conclusions jointly at the α = 0.05

level, using a Bonferroni correction, since each P value is smaller than 0.05/2 = 0.025.
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Example 9.4 (tomato2.sas). Three different tomato varieties (Harvester, Pusa Early

Dwarf, and Ife No. 1) and four different plant densities (10, 20, 30 and 40 thousand plants

per hectare) were considered by a food scientist for planting. The goal of the experiment

was to determine whether variety and plant density affect yield. Thirty-six plots were

used with 3 replicates for each of 12 treatment combinations, which were assigned at

random to the 36 plots. Here, a = 3, b = 4, and n = 3. This is a completely randomised

design with a 3 × 4 factorial treatment structure. The data from the experiment are in

Table 9.31. The response is Y , the yield, measured in tons/hectacre.

Table 9.31: Tomato experiment yield data.

Density (B)

Variety (A) 10 20 30 40

1 7.9 11.2 12.1 9.1

9.2 12.8 12.6 10.8

10.5 13.3 14.0 12.5

2 8.1 11.5 13.7 11.3

8.6 12.7 14.4 12.5

10.1 13.7 15.4 14.5

3 15.3 16.6 18.0 17.2

16.1 18.5 20.8 18.4

17.5 19.2 21.0 18.9

ANALYSIS : The ANOVA table is given in Table 9.32. The interaction term is not

significant since FV D = 0.84 < F6,24,0.05 = 2.508; i.e., variety and plant density do

not interact. Also, note that the interaction plot in Figure 9.30 does not show a large

departure from parallelism. There are main effects due to variety and density since both

FV and FD are large. Since variety and density do not interact, we can treat the factors

separately and compare means within each factor. Since variety is qualitative, we will

do this using pairwise comparisons. Since density is quantitative (with equally-spaced

levels), we will do this using orthogonal polynomial contrasts.
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Table 9.32: ANOVA table for the tomato yield data in Example 9.4.

Source df SS MS F

Variety 2 327.597 163.799 103.34

Density 3 86.687 28.896 18.23

V*D 6 8.032 1.339 0.84

Error 24 38.040 1.585

Total 35 460.356

PAIRWISE COMPARISONS FOR VARIETY MEANS : Our initial two-way interaction

model for the tomato data was Yijk = µ+αi+βj+(αβ)ij+εijk, for i = 1, 2, 3, j = 1, 2, 3, 4,

and k = 1, 2, 3, where εijk ∼ iid N (0, σ2). However, you’ll recall that we did not reject

H0 : (αβ)ij = 0 for all i and j. Because of this, we have, thus, basically acknowledged

that the two-factor no-interaction model

Yijk = µ + αi + βj + εijk,

for i = 1, 2, 3, j = 1, 2, 3, 4, and k = 1, 2, 3, is appropriate for these data. To compare

means among different varieties, we can form confidence intervals for µ1 − µ2, µ1 − µ3,

and µ2−µ3, where µi = µ+αi. The confidence interval for µ1−µ2 is based off the point

estimator Y 1++ − Y 2++. The mean and variance of this estimator are given by (verify!)

E(Y 1++ − Y 2++) = α1 − α2

and

V (Y 1++ − Y 2++) =
2σ2

12
,

respectively. Furthermore, Y 1++ − Y 2++ is normally distributed since it is a linear com-

bination of the Yijks. Thus, a 95 percent confidence interval for µ1 − µ2 would be

(Y 1++ − Y 2++)± t24,0.025

√
2MS[E]

12
.

Individual confidence intervals for µ1−µ3 and µ2−µ3 are formed similarly. Simultaneous

95 percent Tukey confidence intervals for µ1 − µ2, µ1 − µ3, and µ2 − µ3 are given by

(Y 1++ − Y 2++)± q3,24,0.05

√
MS[E]

12
,
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Figure 9.30: Interaction plot for the tomato yield data in Example 9.4.

(Y 1++ − Y 3++)± q3,24,0.05

√
MS[E]

12
,

and

(Y 2++ − Y 3++)± q3,24,0.05

√
MS[E]

12

(the
√

2 term is absorbed into q3,24,0.05). These intervals can be easily computed in SAS;

here are the results for the different varieties:

Simultaneous 95%

Difference Estimate Confidence Limits

a1−a2 -0.8750 -2.1585 0.4085

a1−a3 -6.7917 -8.0752 -5.5081 ***

a2−a3 -5.9167 -7.2002 -4.6331 ***

Thus, it looks as though variety 3 produces the highest mean yield; it is significantly

different from the variety 1 and 2 means. The variety 1 and 2 means are not significantly

different. Note that we can make statements about the orderings among these three
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Figure 9.31: Tomato yields versus plant density.

means, because we have adjusted for multiplicity in the set of three intervals µ1 − µ2,

µ1 − µ3, and µ2 − µ3.

ORTHOGONAL POLYNOMIAL CONTRASTS FOR DENSITY : For the tomato yield

data, we have a quantitative factor; i.e., plant density; furthermore, it is at equally

spaced levels (b1 = 10, b2 = 20, b3 = 30, and b4 = 40). There are four levels of density,

so we can construct linear, quadratic, and cubic contrasts; these contrasts examine

whether or not there are significant linear, quadratic, and cubic trends across the levels

of plant density (see Figure 9.31). The following contrasts can be used to test for linear,

quadratic, and cubic effects:

Linear effect: −3Y +1+ − Y +2+ + Y +3+ + 3Y +4+

Quadratic effect: Y +1+ − Y +2+ − Y +3+ + Y +4+

Cubic effect: −Y +1+ + 3Y +2+ − 3Y +3+ + Y +4+.

One will note that these contrasts have contrast coefficients
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Effect c1 c2 c3 c4

Linear −3 −1 1 3

Quadratic 1 −1 −1 1

Cubic −1 3 −3 1

Note that in the two-way no-interaction model (verify!)

E(−3Y +1+ − Y +2+ + Y +3+ + 3Y +4+) = −3β1 − β2 + β3 + 3β4

E(Y +1+ − Y +2+ − Y +3+ + Y +4+) = β1 − β2 − β3 + β4

E(−Y +1+ + 3Y +2+ − 3Y +3+ + Y +4+) = −β1 + 3β2 − 3β3 + β4

The calculations not only show us exactly what we are estimating, but they also help us

with coding these effects in SAS.

SAS COMMANDS : Here is the SAS code to analyse linear, quadratic, and cubic effects

in plant density (see our last calculations):

model yield = variety density variety*density;

contrast "linear component of density effect" density -3 -1 1 3;

contrast "quadratic component of density effect" density 1 -1 -1 1;

contrast "cubic component of density effect" density -1 3 -3 1;

ANALYSIS : The SAS output for testing these effects is

Contrast DF Contrast SS Mean Square F Pr > F

linear 1 33.974 33.974 21.43 0.0001

quadratic 1 51.361 51.361 32.40 <0.0001

cubic 1 1.352 1.352 0.85 0.3649

Thus, there looks to be a significant linear and a significant quadratic trend in density.

Had these contrasts been preplanned, we could also make these conclusions jointly at the

α = 0.05 level using a Bonferroni correction. The cubic effect is not significant.

PAGE 235



CHAPTER 10 STAT 3601

10 Factorial Treatment Structures: Part II

Complementary reading from Rao: Chapter 13.5-13.7.

10.1 More on a× b factorial experiments

In the last chapter, we were introduced to the notation, philosophy, and analysis of a× b

factorial experiments. In particular, we learned that data from balanced a × b factorial

experiments can be modelled by a two-factor ANOVA model with interaction; i.e.,

Yijk = µ + αi + βj + (αβ)ij + εijk,

for i = 1, 2, ..., a, j = 1, 2, ..., b, and k = 1, 2, ..., n, where εijk ∼ iid N (0, σ2). In this

model, µ denotes the overall mean, αi represents the effect due to the ith level of A, βj

represents the effect due to the jth level of B, and (αβ)ij represents the interaction effect

due to the ith and jth levels of A and B, respectively.

INTERACTION : Data analysis in factorial experiments (involving two factors) should

begin by checking whether or not the interaction term is significant; we do this by testing

H0 : (αβ)ij = 0 (no interaction) versus H1 : not H0. As we have seen in Examples 9.3

and 9.4, the significance of the interaction term plays a major role in determining how we

perform a follow-up analysis (e.g., constructing confidence intervals, performing tests for

orthogonal polynomial contrasts, etc.). When we do not reject H0, we are acknowledging

that the (αβ)ij term is not significantly different from zero. In this situation, we might

consider a new model that excludes the interaction term.

THE TWO-FACTOR NO-INTERACTION MODEL: The two-factor no-interaction model

is given by

Yijk = µ + αi + βj + εijk,

for i = 1, 2, ..., a, j = 1, 2, ..., b, and k = 1, 2, ..., n, where εijk ∼ iid N (0, σ2). The terms

in the no-interaction model have the same interpretation they have in the interaction

model. This model, however, assumes that Factors A and B do not interact.
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REVELATION : We have already seen that the two-factor interaction ANOVA model

can be expressed in the general Y = Xβ + ε notation. The two-factor no-interaction

model can also put expressed in this form. To help see this, suppose that a = 3, b = 2,

and nij = n = 3. In matrix terms, we write

Y =




Y111

Y112

Y113

Y121

Y122

Y123

Y211

Y212

Y213

Y221

Y222

Y223

Y311

Y312

Y313

Y321

Y322

Y323




, X =




1 1 0 0 1 0

1 1 0 0 1 0

1 1 0 0 1 0

1 1 0 0 0 1

1 1 0 0 0 1

1 1 0 0 0 1

1 0 1 0 1 0

1 0 1 0 1 0

1 0 1 0 1 0

1 0 1 0 0 1

1 0 1 0 0 1

1 0 1 0 0 1

1 0 0 1 1 0

1 0 0 1 1 0

1 0 0 1 1 0

1 0 0 1 0 1

1 0 0 1 0 1

1 0 0 1 0 1




, β =




µ

α1

α2

α3

β1

β2




,

and ε = (ε111, ε112, ..., ε323)
′. It is easy to see that X is not a full rank matrix. In

fact, r(X) = 4 < p = 6 (p is the number of parameters), so we can’t estimate β

uniquely. However, the normal equations are still consistent; a solution is given by

β̂ = (X ′X)−X ′Y , where (X ′X)− is any generalised inverse of X ′X. Equivalently, if

we want to force a particular solution to the normal equations X ′Xβ = X ′Y for the

two-factor no-interaction model, we could use side conditions. Since X is rank deficient

by 2, we would need two side conditions; α+ = β+ = 0 is commonly used.
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TESTING THE INTERACTION TERM : In the two-factor interaction model, we know

that testing H0 : (αβ)ij = 0 is performed by using FAB, the F statistic for interaction.

However, we can also test H0 : (αβ)ij = 0 by pitting the no-interaction model against

the interaction model; i.e.,

H0 : Yijk = µ + αi + βj + εijk (reduced model)

H1 : Yijk = µ + αi + βj + (αβ)ij + εijk (full model),

and performing a reduced-versus-full model test. To decide which model is more appro-

priate, all we have to do is examine the size of SS[R]F −SS[R]R = Y ′(M−M 0)Y , where

M 0 and M are the reduced and full model hat matrices, respectively, or, equivalently,

examine the size of

F =
Y ′(M −M 0)Y /r(M −M 0)

MS[E]F
.

The term r(M − M 0), the rank of M − M 0, is the difference in degrees of freedom

from the full and reduced model fits. Note that Y ′(M −M 0)Y can also be computed

by using the partial sums of squares for the interaction term.

Example 10.1 (corn.sas). Consider the corn yield data from Example 9.2, and recall

that we did not reject H0 : (αβ)ij = 0 since FAB = 2.25 was not large. We could have also

arrived at this conclusion from testing the no-interaction model versus the interaction

model. From SAS, here are the ANOVA tables from both models:

No interaction: Reduced Model

Source df SS MS F

Treatments 2 530 265 12.34

Error 14 365 21.5

Total 19 895

Interaction: Full model

Source df SS MS F

Treatments 3 575 191.7 9.6

Error 16 320 20

Total 19 895

The F statistic to test the no-interaction model versus the interaction model is given by

F =
(SS[R]F − SS[R]R)/(3− 2)

MS[E]F
=

575− 530

20
= 2.25,

which is the same as FAB from the full model (this should not be surprising). Note that

SS[R]F − SS[R]R = 45 is also the partial sum of squares for the interaction term.
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MODEL SELECTION : Consider the two-way interaction model

Yijk = µ + αi + βj + (αβ)ij + εijk,

for i = 1, 2, ..., a, j = 1, 2, ..., b, and k = 1, 2, ..., n, where εijk ∼ iid N (0, σ2). We have

already seen that the no-interaction model Yijk = µ + αi + βj + εijk is a reduced version

of the interaction model. However, the one-way ANOVA models Yijk = µ + αi + εijk and

Yijk = µ + βj + εijk are also reduced models when compared to the interaction model!

Thus, from a modelling perspective, there is nothing to prevent us from testing each

reduced model (separately) against the full model; that is, test

H0 : Yijk = µ + αi + βj + εijk (reduced model)

H1 : Yijk = µ + αi + βj + (αβ)ij + εijk (full model),

H0 : Yijk = µ + αi + εijk (reduced model)

H1 : Yijk = µ + αi + βj + (αβ)ij + εijk (full model),

and

H0 : Yijk = µ + βj + εijk (reduced model)

H1 : Yijk = µ + αi + βj + (αβ)ij + εijk (full model).

NOTATION : There are four models of interest here (the interaction model, the no-

interaction model, and the two one-way models), so it is helpful to define some notation

to help us keep track which model is which. We’ll define [AB] to represent the two-factor

interaction model, [A][B] to represent the two-factor no-interaction model, and [A] and

[B] to represent the models which include only Factor A and Factor B, respectively.

The idea is that each model is identified by the highest order terms in it. Thus, we are

interested in testing [A][B] versus [AB], [A] versus [AB], and [B] versus [AB]. We now

illustrate this with an example.

Example 10.2 (sheep.sas). A biologist is studying glucose levels (Y , measured in

mg/dl) in sheep. He randomly assigns 18 sheep to treatments in a 2 × 3 factorial ex-

periment. The first factor (A) is drug (control and slaframine) and the second factor
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Table 10.33: Glucose levels in sheep.

Drug Control AH CM

Control 52, 58, 53 67, 67, 77 63, 55, 54

Slaframine 59, 84, 85 74, 74, 72 63, 79, 66

(B) is diet (control, AH = alfalfa hay, and CM = cottonseed meal). This is a completely

randomised design with a 2×3 factorial treatment structure. The data are in Table 10.33.

The mean-squared error from model [AB] (i.e., the full model) is MS[E] = 59.78. From

SAS, here are the results from all four model fits: [AB], [A][B], [A], and [B]:

Predictors Model SS[T] df F

drug diet drug*diet [AB] 1173.78 5

drug diet [A][B] 912.33 3 2.19

drug [A] 672.22 1 2.10

diet [B] 240.11 2 5.21

The F statistics are formed by pitting each of the smaller models versus the full model

[AB]; for example,

F =
(1173.78− 912.33)/(5− 3)

59.78
= 2.19.

It looks as though models [A] and [A][B] both fit the data as well as the interaction model

(neither F statistic is significant at the α = 0.05 level). However, there is no reason to

choose the [A][B] model if [A] fits just as well. In fact, in the [A][B] model, the test for

H0 : β1 = β2 = β3 = 0 is not rejected (P = 0.2153). The analysis might continue by

writing a confidence interval for the difference in means from the control and slaframine

subjects. In the model Yijk = µ + αi + εijk, it is easy to show (verify!) that

E(Y 1++ − Y 2++) = α1 − α2

and that

V (Y 1++ − Y 2++) =
2σ2

9
.
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Furthermore, Y 1++−Y 2++ is normally distributed since it is a linear combination of the

Yijks. Thus, a 95 percent confidence interval for α1 − α2 would be

(Y 1++ − Y 2++)± t12,0.025

√
2MS[E]

9
,

where MS[E] is the mean-squared error from the full model fit. With y1++ = 60.67,

y2++ = 72.89, MS[E] = 59.78 (full), and t12,0.025 = 2.1788, a 95 percent confidence

interval for α1−α2, the difference in means for the control and slaframine treatments, is

(60.67− 72.89)± 2.1788

√
2(59.78)

9
⇐⇒ (−20.16,−4.28).

It looks as though slaframine significantly increases the mean glucose level in these sheep.

10.2 Factorial experiments with three or more factors

The extension of factorial treatment structures to more than two factors, and the analysis

of data from such experiments, is straightforward. To illustrate the extension, we focus

on three-factor experiments. Suppose that Factor A has a levels, Factor B has b levels,

and Factor C has c levels. The three-factor full-interaction model is given by

Yijkl = µ + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + εijkl,

for i = 1, 2, ..., a, j = 1, 2, ..., b, k = 1, 2, ..., c, and l = 1, 2, ..., n, where εijk ∼ iid N (0, σ2).

We’ll continue to assume that our design is balanced.

TYPES OF EFFECTS : In the three-factor model, there are three types of effects:

• Second-order interaction effect: ABC. This is the effect of interaction between

the three factors.

• First-order interaction effects: AB, AC, and BC. These are the effects of inter-

actions between any two factors.

• Main effects: A, B, and C. These are the three main effects.
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NOTE : First order-interaction effects are the interactions between two factors averaged

over the other factor. When there is a second-order interaction, the first-order interactions

behave differently across the levels of the other factor. See p. 623, Rao.

PARTITIONING SUMS OF SQUARES : In an a× b× c factorial experiment, we could

ignore the treatment structure and just pretend that we have a one-way layout with abc

means. Doing so leads to the usual breakdown

a∑
i=1

b∑
j=1

c∑

k=1

n∑

l=1

(Yijkl − Y ++++)2

︸ ︷︷ ︸
SS[TOT]

= n

a∑
i=1

b∑
j=1

c∑

k=1

(Y ijk+ − Y ++++)2

︸ ︷︷ ︸
SS[T]

+
a∑

i=1

b∑
j=1

c∑

k=1

n∑

l=1

(Yijkl − Y ijk+)2

︸ ︷︷ ︸
SS[E]

,

which corresponds to the one-way ANOVA table:

Source df SS MS F

Treatments abc− 1 SS[T] MS[T] F = MS[T]
MS[E]

Error N − abc SS[E] MS[E]

Total N − 1 SS[TOT]

Here, N = abcn, the total number of observations. The key point to realise is that, like

before with the two-factor model, we can break up the treatment sums of squares SS[T]

into components for the main effects and the interaction effects. That is,

SS[T] = SS[A] + SS[B] + SS[C] + SS[AB] + SS[AC] + SS[BC] + SS[ABC].

In general, this breakdown gives rise to the ANOVA table for the three-way full-

interaction model; this table is Table 10.34. For what they are worth, I will now provide

the computing formulae for the sums of squares. The correction term for the mean is

CM = Y 2
++++/N . The total sum of squares is given by

SS[TOT] =
a∑

i=1

b∑
j=1

c∑

k=1

n∑

l=1

Y 2
ijkl − CM.
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Table 10.34: ANOVA table for the a× b× c factorial experiment.

Source df SS MS F

A a− 1 SS[A] MS[A] FA = MS[A]
MS[E]

B b− 1 SS[B] MS[B] FB = MS[B]
MS[E]

C c− 1 SS[C] MS[C] FC = MS[C]
MS[E]

AB (a− 1)(b− 1) SS[AB] MS[AB] FAB = MS[AB]
MS[E]

AC (a− 1)(c− 1) SS[AC] MS[AC] FAC = MS[AC]
MS[E]

BC (b− 1)(c− 1) SS[BC] MS[BC] FBC = MS[BC]
MS[E]

ABC (a− 1)(b− 1)(c− 1) SS[ABC] MS[ABC] FABC = MS[ABC]
MS[E]

Error N − abc SS[E] MS[E]

Total N − 1 SS[TOT]

The sum of squares for the main effects are

SS[A] =
1

bcn

a∑
i=1

Y 2
i+++ − CM

SS[B] =
1

acn

b∑
j=1

Y 2
+j++ − CM

SS[C] =
1

abn

c∑

k=1

Y 2
++k+ − CM.

The sum of squares for the interaction effects are

SS[AB] =

(
1

cn

a∑
i=1

b∑
j=1

Y 2
ij++ − CM

)
− SS[A]− SS[B]

SS[AC] =

(
1

bn

a∑
i=1

c∑

k=1

Y 2
i+k+ − CM

)
− SS[A]− SS[C]

SS[BC] =

(
1

an

b∑
j=1

c∑

k=1

Y 2
+jk+ − CM

)
− SS[B]− SS[C]

SS[ABC] =

(
1

n

a∑
i=1

b∑
j=1

c∑

k=1

Y 2
ijk+ − CM

)
− SS[A]− SS[B]− SS[C]

−SS[AB]− SS[AC]− SS[BC].
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F STATISTICS : As in the two-factor setting, we can test for main and interaction effects

in a× b× c experiments by using F statistics. For example, the statistic

FA =
MS[A]

MS[E]
∼ Fa−1,N−abc.

is used to test H0 : α1 = α2 = · · · = αa = 0 (no A main effect) versus H1 : not H0. The

statistic

FBC =
MS[BC]

MS[E]
∼ F(b−1)(c−1),N−abc.

is used to test H0 : (βγ)jk = 0 for all j and k (no BC interaction) versus H1 : not H0.

The statistic

FABC =
MS[ABC]

MS[E]
∼ F(a−1)(b−1)(c−1),N−abc.

is used to test H0 : (αβγ)ijk = 0 for all i, j, and k (no ABC interaction) versus H1 : not

H0. The other F statistics are defined analogously.

THE GENERAL LINEAR MODEL: The three-factor full interaction model can be ex-

pressed in the form Y = Xβ + ε. As an exercise, you might try to show this in a simple

case, say, when a = b = c = n = 2. However, as you might suspect, the X matrix is not

full rank, and, hence, the normal equations X ′Xβ = X ′Y can not be solved uniquely.

We could impose side conditions to solve them, but we know from a practical standpoint

that this is not a big issue.

GENERAL STRATEGY FOR A FACTORIAL ANALYSIS : The following strategies are

common when analysing data from a× b× c factorial experiments.

• Start by looking at whether or not the second-order interaction term ABC is sig-

nificant. This is done by using FABC . As we saw in two-factor experiments, the

highest order interaction term dictates the entire follow-up analysis!

– If there is a second-order interaction, then tests for main effects and

first-order interaction effects are less meaningful because their interpretations

depend on the second-order interaction. In this situation, the easiest approach

is to just do the entire analysis as a one-way ANOVA with abc treatments.
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Table 10.35: Legume data for different soils.

A (Species) Alfalfa Red clover Sweet clover

B (Soil) loam sand clay loam sand clay loam sand clay

treated (c1) 8 17 22 7 26 34 10 24 39

17 13 20 10 24 32 9 24 36

not treated (c2) 5 11 16 3 17 32 5 16 33

4 10 15 5 19 29 4 16 34

– If the second-order interaction term is not significant, look at the

first-order interaction terms. If they are all significant, I would probably do

three separate analyses: one for the ab means, one for the ac means, and one

for the bc means. If two of the first-order interaction effects are significant, I

would do two interaction analyses. If only one is significant, I would do one

interaction analysis. If none of the first-order interaction terms are significant,

I would move on to analysing main effects analogously to how we did this in

two-factor experiments.

• In practice, instead of formally looking at F statistics like FA and FBC , I usually

just fit all possible reduced models and find the smallest one that fit the data well.

We now illustrate this approach with an example.

Example 10.3 (seed.sas). In a greenhouse experiment, a plant pathologist wanted

to determine the rate of emergences of seed for three species of legumes (alfalfa, red

clover, and sweet clover) and three soil types (silt loam, sand, and clay). Legumes were

either treated with a fungicide or not. So, we have three factors here. For notational

purposes, we will take legume as Factor A (3 levels), soil type as Factor B (3 levels), and

fungicide as Factor C (2 levels). The response is Y , the number of plants emerged. Each

of the 18 treatment combinations were randomly assigned 36 pots. This is a completely

randomised design with a 3× 3× 2 factorial treatment structure. The data are given in

Table 10.35.
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ANALYSIS : Our first priority is to figure out which interactions are important. The

mean-squared error from model [ABC] (i.e., the full model) is MS[E] = 4.167. The

model notation here mirrors that as before. For example, model [AB][AC] corresponds

to Yijkl = µ + αi + βj + γk + (αβ)ij + (αγ)ik + εijkl, model [A][B][C] corresponds to

Yijkl = µ + αi + βj + γk + εijkl, etc. As you will note, the main effects are always all

included. From SAS, here are the results:

Model SS[T] df F

[ABC] 3848.89 17

[AB][AC][BC] 3833.61 13 0.92

[AB][AC] 3823.55 11 1.01

[AB][BC] 3830.72 11 0.73

[AC][BC] 3406.33 9 13.28

[AB][C] 3820.67 9 0.85

[AC][B] 3396.28 7 10.89

[BC][A] 3403.44 7 10.69

[A][B][C] 3393.39 5 9.11

All of the models have been compared to the full model using F statistics. The F

statistics are formed by pitting each of the smaller models versus the full model [ABC];

for example, to test model [A][B][C] versus the full model, we have

F =
(3848.89− 3393.39)/(17− 5)

4.167
= 9.11.

Other F statistics are formed similarly. It takes neither a genius nor an F table to

see that the only models that fit the data are those that include the AB (legume-soil)

interaction. Among these models, there is no reason not to choose model [AB][C] since

it is the smallest. In fact, the extra interaction terms in models [AB][AC], [AB][BC], and

[AB][AC][BC] are all not significant. Writing out the model [AB][C], it is

Yijkl = µ + αi + βj + γk + (αβ)ij + εijkl.

The interaction plot for soil and legume is in Figure 10.32. Continuing with the analysis,
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Figure 10.32: Legume-soil interaction plot for the seed data from Example 10.3.

we should investigate the AB (legume-soil) interaction. The two levels of C (fungicide)

can be examined individually. Starting with the latter, we can construct a confidence

interval for the difference of means for treated and untreated seeds. In the reduced model

Yijkl = µ + αi + βj + γk + (αβ)ij + εijkl, it is easy to show (verify!) that

E(Y ++1+ − Y ++2+) = γ1 − γ2

and that

V (Y ++1+ − Y ++2+) =
2σ2

18
.

Furthermore, Y ++1+ − Y ++2+ is normally distributed since it is a linear combination of

the Yijkls. Thus, a 95 percent confidence interval for γ1 − γ2 would be

(Y ++1+ − Y ++2+)± t18,0.025

√
2MS[E]

18
,

where MS[E] is the mean-squared error from the full model fit. With y++1+ = 20.67,

y++2+ = 15.22, MS[E] = 4.167 (full), and t18,0.025 = 2.1009, a 95 percent confidence

interval for γ1 − γ2, the difference in means for the treated and untreated seeds, is given
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Figure 10.33: Factor plot for the seed data from Example 10.3.

by (4.01, 6.87). Thus, it looks as though the treated seeds produce a larger mean number

or emerged plants than those seeds untreated. To conduct the legume-soil analysis, I

would construct pairwise intervals for the means of the different legumes for each soil

(separately). For example, to compare the legumes (a1, a2 and a3) for the sand (b3)

group only, note that in the reduced model Yijkl = µ + αi + βj + γk + (αβ)ij + εijkl, we

have the following (verify!):

E(Y 23++ − Y 13++) = (α2 − α1) + [(αβ)23 − (αβ)13]

E(Y 33++ − Y 13++) = (α3 − α1) + [(αβ)33 − (αβ)13]

E(Y 33++ − Y 23++) = (α3 − α2) + [(αβ)33 − (αβ)23].

These calculations form the basis for the SAS commands:

estimate ’alf-red sand’ legume -1 1 0 legume*soil 0 0 -1 0 0 1 0 0 0;

estimate ’alf-sweet sand’ legume -1 0 1 legume*soil 0 0 -1 0 0 0 0 0 1;

estimate ’red-sweet sand’ legume 0 -1 1 legume*soil 0 0 0 0 0 -1 0 0 1;
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DIATRIBE : As illustrated in Examples 10.2 and 10.3, you might see that I find testing

reduced models (versus a full model) to be more sensible than testing hypotheses about

parameters in the full model. This is why I resist looking at statistics like FA and FAB in

full three-factor ANOVA models. These statistics test hypotheses about parameters.

While parameters are an integral part of most models, I don’t believe they are an end in

themselves. I believe that good models are the end product. Of course, in a three-factor

full-interaction ANOVA model, the statistic FABC tests a hypothesis about parameters

in the full model, but it also tests a reduced model versus the full model (which reduced

model?), so I don’t mind looking at it.

UNBALANCED DATA: When the number of replications is different for different treat-

ment combinations (e.g., see Example 13.16, p. 630-1, Rao), contrasts that measure

main and interaction effects are no longer orthogonal (recall the 2× 2 case). This is not

prohibitive. All we lose is having nice computing formulae that we probably will never

use anyway (unless we are stranded somewhere without SAS). You will note that this

approach of examining all reduced models does not require that the design be balanced. It

only relies on the general theory of reduced-model testing and our usual model assump-

tions. When nijk = 0; i.e., we have no measurements of Factors A, B, and C, at levels

i, j, and k, respectively, then we have estimability issues. In this case, certain factorial

effects can not be estimated. However, we can still take the approach of testing reduced

and full models.

10.3 Expected mean squares

Mean squares can be viewed as random quantities because they depend on observations

of Y , which is random itself. That is, one can think of a mean square statistic as

a random variable. Like any random variable, it has, among other things, its own

expected value, its own variance, and its own probability distribution! The expected value

of a mean square, or, expected mean square, for short, is an important quantity. These

quantities help us construct F statistics. You’ll recall that we have already examined
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Table 10.36: ANOVA table for the a× b factorial experiment.

Source df SS MS F

A a− 1 SS[A] MS[A] FA = MS[A]
MS[E]

B b− 1 SS[B] MS[B] FB = MS[B]
MS[E]

AB (a− 1)(b− 1) SS[AB] MS[AB] FAB = MS[AB]
MS[E]

Error N − ab SS[E] MS[E]

Total N − 1 SS[TOT]

expected mean squares in the one-way layout (see Chapter 2) and in regression models

(see Chapters 4 and 6). Doing so aided our understanding of why one should reject null

hypotheses when F statistics become large.

EXPECTED MEAN SQUARES IN THE TWO-FACTOR MODEL: Consider our two-

factor interaction model; i.e.,

Yijk = µ + αi + βj + (αβ)ij + εijk,

for i = 1, 2, ..., a, j = 1, 2, ..., b, and k = 1, 2, ..., n, where εijk ∼ iid N (0, σ2). If we impose

the “usual” side conditions α+ = β+ = (αβ)i+ = (αβ)+j = 0 (see Equation 13.16, p.

621, Rao), then it follows that

E(MS[A]) = σ2 + bn(a− 1)−1

a∑
i=1

α2
i

E(MS[B]) = σ2 + an(b− 1)−1

b∑
j=1

β2
j

E(MS[AB]) = σ2 + n[(a− 1)(b− 1)]−1

a∑
i=1

b∑
j=1

(αβ)2
ij

E(MS[E]) = σ2.

USING THE EXPECTED MEAN SQUARES : These equations can be helpful. For

example, suppose that we wanted to test for the presence of an AB interaction; that

is, test H0 : (αβ)ij = 0 for all i and j (no interaction) versus H1 : not H0. When H0

is true, then both MS[AB] and MS[E] estimate the same quantity; namely, σ2. In this
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case, we would expect FAB = MS[AB]/MS[E] to be close to one. When H0 is not true,

we would expect MS[AB] to estimate something larger than σ2. This will cause FAB

to get large. We could apply the same reasoning to see why FA = MS[A]/MS[E] and

FB = MS[B]/MS[E] get large when the hypotheses H0 : α1 = α2 = · · · = αa = 0 and

H0 : β1 = β2 = · · · = βb = 0, respectively, are not true. You will note that in all three

cases, we are looking for a denominator mean square that has the same expectation as the

numerator mean square when a specific H0 is true. In all three cases, this denominator

mean square is MS[E]. In more complicated models (e.g., models with random and/or

nested factors), MS[E] is not always the “right” denominator.

EXPECTED MEAN SQUARES IN THE THREE-FACTOR MODEL: Consider our

three-factor full-interaction model; i.e.,

Yijkl = µ + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + εijkl,

for i = 1, 2, ..., a, j = 1, 2, ..., b, k = 1, 2, ..., c, and l = 1, 2, ..., n, where εijk ∼ iid N (0, σ2).

If we impose the “usual” side conditions analogous to the two-factor interaction model,

then it follows that

E(MS[A]) = σ2 + bcn(a− 1)−1

a∑
i=1

α2
i

E(MS[B]) = σ2 + abn(b− 1)−1

b∑
j=1

β2
j

E(MS[C]) = σ2 + bcn(c− 1)−1

c∑

k=1

γ2
k

E(MS[AB]) = σ2 + cn[(a− 1)(b− 1)]−1

a∑
i=1

b∑
j=1

(αβ)2
ij

E(MS[AC]) = σ2 + bn[(a− 1)(c− 1)]−1

a∑
i=1

c∑
j=1

(αγ)2
ik

E(MS[BC]) = σ2 + an[(b− 1)(c− 1)]−1

b∑
j=1

c∑

k=1

(βγ)2
jk

E(MS[ABC]) = σ2 + n[(a− 1)(b− 1)(c− 1)]−1

a∑
i=1

b∑
j=1

c∑

k=1

(αβγ)2
ijk

E(MS[E]) = σ2.
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Table 10.37: Yield data for different alcohols and bases.

Alcohol

a1 a2 a3

Base 1 Base 2 Base 3 Base 4 Base 5 Base 6

91.3 90.7 89.9 88.1 79.5 87.6

91.4 94.7 92.3 93.1 70.1 89.8

89.9 89.5 92.6 90.8 79.7 88.2

94.4 85.2 94.4 98.1 76.1 87.7

USING THE EXPECTED MEAN SQUARES : Again, we can see the usefulness of these

expressions to construct and appreciate F statistics. For example, if H0 : (αβγ)ijk = 0

for all i, j, and k (no ABC interaction) is true, then E(MS[ABC]) = E(MS[E]) = σ2, in

which case the ratio FABC = MS[ABC]/MS[E] should be close to one. If H0 is not true,

then we would expect FABC to be larger than one. For all the available F tests, we see

that MS[E] is the “right” denominator.

10.4 Experiments with nested factors

CROSSED FACTORS : Up until now, in our discussion of factorial experiments, we have

assumed that factors are crossed. In general, we say that factors A and B are crossed if

every level of A occurs in combination with every level of B. Examples 9.1-9.4, as well as

Examples 10.2-3 all are examples with a crossed factorial treatment structure. In some

experiments, however, the levels of factor B (say) do not appear with all levels of factor

A. Consider the following (fictitious) example.

Example 10.4 (chemical.sas). A chemical production process consists of a first reac-

tion with an alcohol (A) and a second reaction with a base (B). We have three alcohols

(a1, a2, and a3) and six bases (b1, b2, b3, b4, b5, and b6). The data are in Table 10.37. The

response is Y , the percent yield. Clearly, alcohol and base are not crossed factors. For
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example, there is no treatment combination a1b3. We only have the following (six) treat-

ment combinations: a1b1, a1b2, a2b3, a2b4, a3b5, and a3b6. This is a completely randomised

design with a 3 × 2 nested factorial treatment structure. There are 3 levels of alcohol

and 2 levels of base within each level of alcohol.

NESTED FACTORS : When the levels of one factor (e.g., factor B) are similar but not

identical for different levels of another factor (e.g., factor A), we say that the levels of B

are nested within A and write B(A). In other words, if you tell me which base was used

in Example 10.4, I can tell you, with certainty, which level of alcohol was used (there is

only one). Thus, base is nested within alcohol.

NOTE : If, in Example 10.4, we only had two bases, say, b1 and b2, and each base appeared

under each alcohol, then we would have a completely randomised design with a 3 × 2

crossed factorial treatment structure.

LINEAR STATISTICAL MODEL: The linear statistical model for the two-factor

nested design is

Yijk = µ + αi + βj(i) + εijk,

for i = 1, 2, ..., a, j = 1, 2, ..., b, and k = 1, 2, ..., nij, where εijk ∼ iid N (0, σ2). In this

model, µ denotes the overall mean, αi represents the effect due to the ith level of A, βj(i)

represents the effect of the jth level of B, nested within the ith level of A. In Example

10.4, we have a = 3 and b = 2. We’ll continue to assume that our design is balanced.

REVELATION : It should come as no surprise to you that the two-factor nested model

can be expressed in the form Y = Xβ + ε. To help see this, suppose that a = 3, b = 2,

and nij = n = 4, as in Example 10.4. The matrix formulation of the nested model is on

the next page. As you might suspect, the X matrix is not full rank. Here, you will note

that the last six columns of X are linearly independent, and the first four columns are

each a linear combination of the last six columns; thus, r(X) = 6 < 10 = p, so the normal

equations X ′Xβ = X ′Y can not be solved uniquely. We can impose side conditions to

solve them. In balanced designs, as in Example 10.4, commonly-used side conditions in

the two-factor nested model are α+ = β+(i) = 0, for i = 1, 2, ..., a. You will note that
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there are four side conditions here (since a = 3), which is the difference between the

number of parameters and r(X). Alternatively, we could just use a generalised inverse

of X ′X to solve the normal equations; i.e., β̂ = (X ′X)−X ′Y ; this solution simply

corresponds to using a certain side condition (which one depends on which generalised

inverse was used).

Y =




Y111

Y112

Y113

Y114

Y121

Y122

Y123

Y124

Y211

Y212

Y213

Y214

Y221

Y222

Y223

Y224

Y311

Y312

Y313

Y314

Y321

Y322

Y323

Y324




, X =




1 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0

1 1 0 0 0 1 0 0 0 0

1 1 0 0 0 1 0 0 0 0

1 1 0 0 0 1 0 0 0 0

1 1 0 0 0 1 0 0 0 0

1 0 1 0 0 0 1 0 0 0

1 0 1 0 0 0 1 0 0 0

1 0 1 0 0 0 1 0 0 0

1 0 1 0 0 0 1 0 0 0

1 0 1 0 0 0 0 1 0 0

1 0 1 0 0 0 0 1 0 0

1 0 1 0 0 0 0 1 0 0

1 0 1 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 1 0

1 0 0 1 0 0 0 0 1 0

1 0 0 1 0 0 0 0 1 0

1 0 0 1 0 0 0 0 1 0

1 0 0 1 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 1




, β =




µ

α1

α2

α3

(αβ)1(1)

(αβ)2(1)

(αβ)1(2)

(αβ)2(2)

(αβ)1(3)

(αβ)2(3)




,

and ε = (ε111, ε112, ..., ε324)
′.
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Table 10.38: ANOVA table for the balanced a× b nested experiment.

Source df SS MS F

A a− 1 SS[A] MS[A] FA = MS[A]
MS[E]

B(A) a(b− 1) SS[B(A)] MS[B(A)] FB(A) = MS[B(A)]
MS[E]

Error N − ab SS[E] MS[E]

Total N − 1 SS[TOT]

ANOVA TABLE FOR TWO-FACTOR NESTED EXPERIMENTS : The breakdown for

the sum of squares in (balanced) two-factor nested experiments is based on the identity

a∑
i=1

b∑
j=1

n∑

k=1

(Yijk − Y +++)2

︸ ︷︷ ︸
SS[TOT]

= nb
a∑

i=1

(Y i++ − Y +++)2

︸ ︷︷ ︸
SS[A]

+ n
a∑

i=1

b∑
j=1

(Y ij+ − Y i++)2

︸ ︷︷ ︸
SS[B(A)]

+
a∑

i=1

b∑
j=1

n∑

k=1

(Yijk − Y ij+)2

︸ ︷︷ ︸
SS[E]

;

i.e., SS[TOT] = SS[A] + SS[B(A)] + SS[E]. Computing formulae for the sums of squares

are given on p. 639, Rao. The ANOVA table for a balanced two-factor nested experiment

is given in Table 10.38. Here, N = abn. Since there are a levels of Factor A, there are

a − 1 degrees of freedom. For each level of A, there are b − 1 degrees of freedom for

Factor B. Thus, in all, there are a(b − 1) degrees of freedom for B(A), across all levels

of A. Since every level of B does not appear with every level of A, we can not explicitly

compute an interaction between A and B.

F STATISTICS : We can test for effects in a×b nested experiments by using F statistics.

In particular, the statistic

FA =
MS[A]

MS[E]
∼ Fa−1,N−ab.

is used to test H0 : α1 = α2 = · · · = αa = 0 (no A main effect) versus H1 : not H0. The

statistic

FB(A) =
MS[B(A)]

MS[E]
∼ Fa(b−1),N−ab,
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is used to test H0 : β1(i) = β2(i) = · · · = βb(i) = 0 (no B main effect within ith level of A),

for all i = 1, 2, ..., a, versus H1 : not H0. Rejecting H0 here means that, within at least

one level of A, different levels of B do not have the same effect.

PLAN OF ATTACK : In nested experiments, it is suggested to start by looking at FB(A);

that is, first test whether or not there is a B main effect nested within the levels of A.

• if the B main effect is significant, a test for the main effect of A would be less

meaningful because it ignores the fact that different levels of A use different levels

of B. In this situation, one could treat the problem as a one-way ANOVA with ab

treatments and analyse the data accordingly; e.g., form pairwise intervals, contrasts,

etc. I would tend to examine the levels of B, separately, within each level of A.

• if the B main effect is not significant, it is safe to test for the main effect of A.

In this situation, I would immediately proceed to comparing the levels of A using

pairwise intervals or contrasts.

ANALYSIS OF YIELD DATA: Here is the ANOVA table for the yield data (for the

different alcohols and bases) in Example 10.4:

Table 10.39: ANOVA table for the yield data in Example 10.4.

Source df SS MS F

Alcohol 2 471.823 235.912 23.05

Base(Alcohol) 3 292.854 97.618 9.54

Error 18 184.243 10.236

Total 23 948.920

Since FAB = 9.54 is large (e.g., F3,18,0.05 = 3.160), this suggests that bases affect the

mean yield differently within at least one level of alcohol; that is, H0 : β1(i) = β2(i) = 0,

for all i = 1, 2, 3, is rejected. With this information, few would be bold enough to try to

understand what FA = 23.05 is saying. Are the alcohols really different, or, is FA large

because different bases are used with each alcohol? Unfortunately, since each alcohol uses

different bases, it is impossible to tell.
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CONTINUING THE ANALYSIS : To further understand where the differences are, let’s

compare the levels of base (B) within each level of alcohol (A). For example, to estimate

µ12−µ11, the difference of the a1b2 and a1b1 treatment means, we would use Y 12+−Y 11+.

Straightforward calculations show that (verify!)

E(Y 12+ − Y 11+) = β2(1) − β1(1)

and that

V (Y 12+ − Y 11+) =
2σ2

4
.

Furthermore, Y 12+ − Y 11+ is normally distributed since it is a linear combination of the

Yijks. Thus, a 95 percent confidence interval for β2(1) − β1(1) would be

(Y 12+ − Y 11+)± t18,0.025

√
2MS[E]

4
.

With y11+ = 91.75, y12+ = 90.025, t18,0.025 = 2.1009, and MS[E] = 10.235, the confidence

interval for β2(1)−β1(1) is (−3.03, 6.48). Thus, there is not a significant difference between

the two bases within the first level of alcohol. We could construct intervals for β2(2)−β1(2)

and β2(3)−β1(3) in an analogous manner (worrying about multiplicity if we want to make

joint statements). Alternatively, we could code the following statements in SAS:

contrast ’b2-b1 within a1’ base(alcohol) -1 1 0 0 0 0;

contrast ’b4-b3 within a2’ base(alcohol) 0 0 -1 1 0 0;

contrast ’b6-b5 within a3’ base(alcohol) 0 0 0 0 -1 1;

These statements allow us to test H0 : β2(1) − β1(1) = 0, H0 : β2(2) − β1(2) = 0, and

H0 : β2(3) − β1(3) = 0, respectively. The output is given below:

Contrast DF Contrast SS Mean Square F Pr > F

b2-b1 within a1 1 5.951 5.951 0.58 0.4556

b4-b3 within a2 1 0.101 0.101 0.01 0.9219

b6-b5 within a3 1 286.801 286.801 28.02 <.0001
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ANALYSIS : Thus, it looks as though bases 5 and 6 (those within the third level of

alcohol) are significantly different. We have already seen that bases 1 and 2 are not

different; neither are bases 3 and 4. Notice what we have done here; namely, we have

broken up SS[B(A)] into the sums of squares for three orthogonal contrasts. Note that

SS[B(A)] = 292.854 = 5.951 + 0.101 + 286.801 (up to rounding error).

NOTE : Had there been no main effect for base (within alcohol), it would have been

acceptable to examine the main effect of alcohol. Had this been the reality, FA = 23.05

suddenly becomes more meaningful; it tells us that the alcohol means are different (but,

of course, it doesn’t tell us how they are different!). Constructing pairwise intervals for

the alcohol means would tell us where the differences are. Doing this in the presence of

a base (B) main effect would give you little information about the levels of alcohol.

EXPECTED MEAN SQUARES IN THE TWO-FACTOR NESTED MODEL: Consider

our two-factor nested model; i.e.,

Yijk = µ + αi + βj(i) + εijk,

for i = 1, 2, ..., a, j = 1, 2, ..., b, and k = 1, 2, ..., nij, where εijk ∼ iid N (0, σ2). If we

impose the “usual” side conditions α+ = β+(i) = 0 (see p. 637, Rao), then it follows that

E(MS[A]) = σ2 + bn(a− 1)−1

a∑
i=1

α2
i

E(MS[B(A)]) = σ2 + an(b− 1)−1

a∑
i=1

b∑
j=1

β2
j(i)

E(MS[E]) = σ2.

USING THE EXPECTED MEAN SQUARES : Again, we can see the usefulness of these

expressions. For example, if H0 : βj(i) = 0, for all i = 1, 2, ..., a, (no B main effect) is true,

then E(MS[B(A)]) = E(MS[E]) = σ2, in which case the ratio FABC = MS[B(A)]/MS[E]

should be close to one. If H0 is not true, then we would expect FB(A) to be larger than

one. For each F test, we see that MS[E] is the “right” denominator. Here, we are

assuming that both A and B are fixed factors. If B was random (coming up!), then

FA would not use MS[E] as a denominator; FA would use MS[B(A)] as a denominator!
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11 Some Comments on Designing Experiments

11.1 Introduction

We now revisit some of the key issues involved with designing experiments.

TERMINOLOGY : An experiment is an investigation set up to provide answers to

a research question (or questions) of interest. In our context, an experiment is most

likely to involve a comparison of treatments (e.g., fertilizers, rations, drugs, methods,

varieties, etc.). The outcome of an experiment is information in the form of observations

on a response, Y (e.g., yield, number of insects, weight gain, length of life, etc.).

PREVAILING ISSUE : Because of uncertainty in the responses due to sampling and

biological variation, we can never provide definitive answers to the question(s) of interest

based on such observations. However, we can make inferences that incorporate and

quantify inherent uncertainty.

SOME IMPORTANT THEMES : We have mentioned some of these ideas already, but

their importance cannot be overemphasised.

• Before an experiment may be designed, the question(s) of interest must be well-

formulated. Nothing should start (including data collection) until this happens.

• The investigator and statistician should work together, before data collection be-

gins, to identify important features and the appropriate design.

• The design of the experiment lends naturally to the analysis of the data collected

from the experiment.

• If the design changes, the analysis will as well. If experiments are designed appro-

priately, the analysis should be routine. If not, researchers run the risk of not being

able to address any of their main questions.
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11.2 Roles of investigator and statistician

The investigator and statistician may have different perspectives on an experiment. If

they work together from the initial planning stage, the investigation can provide the

information necessary to give insight into important question(s) of scientific interest.

THE INVESTIGATOR:

• Formulate broad questions of interest. The first step in experimental design is to

decide what the problem is! In almost all situations, this is the domain of the

investigator. The statistician is generally not in a position to judge this.

• Decide which comparisons are relevant. Once the general questions of interest have

been determined, the investigator must decide what issues are to be the focus of

the experiment. Often, one experiment can not answer all the questions of interest.

• Decide on a meaningful difference. The investigator, based on scientific aspects,

should have a general idea of what kind of differences among treatments are im-

portant. This knowledge is usually required to determine sample sizes.

• Identify the resources available. The investigator should have an idea of limitations

that may be imposed (e.g., money, time, space, personnel, etc.). This almost always

will have an effect on how the experiment is designed.

• Identify any peculiarities associated with the situation. The investigator should

think of anything that might have an effect on how the experiment may be carried

out. For example, if an experiment is to be conducted in a greenhouse, and there

is an air conditioner at one end dripping condensation that might systematically

affect the outcome for plants near it, the statistician needs to know this peculiarity!

If informed beforehand, the statistician can design the experiment around this

peculiarity (i.e., design the experiment to control this source of variability).

• Decide on the scope of interest. The investigator should have some sense of the

desired applicability of the results from the experiment.
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THE STATISTICIAN :

• Identify the relevant population. The ultimate objective for the statistician is to cast

the problem in a formal statistical model framework. The first step is to identify

the population(s) from which sampling will be required.

• Identify an appropriate probability model. Based on the type of response (e.g.,

discrete, continuous, etc.) to be observed, the statistician must determine how to

represent the populations in terms of probability models.

• Cast the question of interest as statistical hypotheses. With the chosen probability

model, express the scientific questions of interest in terms of population parameters.

• Design the experiment. Taking into account the limitations on resources, peculiari-

ties, and meaningful scientific differences to be identified, determine an appropriate

plan to sample from the population(s). This involves assigning the treatments to

experimental units in such a way that (a) samples are representative of the popu-

lation, (b) no confounding or bias is possible, (c) the relevant comparisons may be

addressed, (d) meaningful differences can be detected with sufficient power.

• Recognise possible shortcomings. It may very well be the case that some or all

research questions can not be suitably addressed with the available resources. In

this situation, the statistician must be up front and honest about this issue.

A COMMON OCCURRENCE : In many situations, the statistician may come up with

a design that the investigator realises is impossible to carry out (perhaps due to unmen-

tioned peculiarities, constrained resources, unreasonable randomisation protocols, etc.).

Taking this into consideration, the statistician may have to design the experiment differ-

ently. Also, the statistician may determine that the available resources are not sufficient

to detect differences with the desired precision. Based on this consideration, the inves-

tigator may decide to scale back the scope of inference or seek additional resources. It

should be clear that to maximize the usefulness of an experiment, the investigator and

statistician should work together from the outset.
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11.3 Statistical issues in experimental design

TERMINOLOGY : A treatment is a procedure whose effect is to be measured and

compared with other procedures. The experimental unit is the unit of experimen-

tal material to which one application of the treatment is applied. The experimental

design is a plan for applying the treatments to experimental units in such a way that

experimental units are alike except for the treatments.

A SIMPLE SETTING : Suppose that we are comparing two treatments (e.g., drugs) in

a balanced one-way layout. A statistical model for this situation is Yij = µ + τi + εij, for

i = 1, 2 and j = 1, 2, ..., n, where εijk ∼ iid N (0, σ2). Recall that our test statistic is

t =
Y 1+ − Y 2+√

2MS[E]/n
,

where MS[E] is the pooled variance estimator of σ2. The denominator of t; i.e., the

estimated standard error of Y 1+ − Y 2+, measures how precisely we can estimate the

difference between the two treatment means. It depends on the two components; namely,

the number of replicates, n, and σ2, the experimental error variance. These are the two

key aspects that must be considered when designing any experiment. Here we are only

considering the simple case of two treatments in a one-way layout; however, these two

issues arise generally in more elaborate designs.

REPLICATION : In the two-sample case, the sample size n represents the number of

experimental units (i.e., the number of replicates) seen on each treatment.

• Increasing the number of replicates, in general, decreases the standard error. This

increases precision and our ability to detect treatment differences. Any experimen-

tal design must have a sufficient number of experimental units on each treatment.

This is well under our control and limited only by the resources available.

• The number of replicates per treatment is a key factor in determining precision

and power. If we have a fixed number of experimental units available, part of the

design is how to make the best use of them for detecting treatment differences.
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• It should be clear that, under these conditions, we would be better off with a

few treatments and many replicates instead of many treatments and only a few

replicates on each. The same total number of experimental units can lead to two

very different designs: one that is powerful in detecting differences, and one that

is not. If limited resources are available, it is better to reduce the number of

treatments to be considered or postpone the experiment rather than proceed with

too few replicates.

EXPERIMENTAL ERROR: Consider the model for our balanced one-way layout; i.e.,

Yij = µ + τi + εij, for i = 1, 2 and j = 1, 2, ..., n, where εijk ∼ iid N (0, σ2).

• The term µ represents the mean of responses for all experimental units before treat-

ment application. The term τi represents the effect of treatment i. Together, these

components characterise the two treatment means µ1 and µ2. The treatment mean

is fixed for each treatment and does not vary. What does vary are the observations

Yij because of inherent biological differences in the sample experimental units to

which the treatments are applied.

• The error term, εij characterises the inherent variation in experimental units that

makes them yield different responses. The (unknown) value σ2 characterises the

variation in the εij values in the population of experimental units.

REALISATION : We should see that precision of estimation and power for testing dif-

ferences depends on the inherent variation in the experimental units. If this variation

is large, our ability to provide good estimates and detect differences may be limited.

Inspection of 2σ2/n (the standard error) shows that one way we might try to overcome

this variability is increase the number of experimental units per treatment to make 2σ2/n

small. Unlike replication, we cannot control all variation. There is always variation at-

tributable to the experimental units used in the experiment. However, by being “clever,”

paying careful attention to the nature of the experimental material, we may be able to

reduce the effects of inherent variation by designing the experiment appropriately.
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EXPERIMENTAL ERROR: If we wish to compare treatments, the experimental unit is

the relevant unit of experimental material when assessing the available information. The

experimental error measures mainly inherent variation among the experimental units. To

“be clever,” consider the following key points:

• If we wish to detect differences among treatments, then we hope that most of the

variability in results is due to the systematic effect of treatments rather than the

experimental error.

• If we could reduce the magnitude of experimental error somehow, we would be in

a better position to detect differences among the treatments. As we have just dis-

cussed, we can not eliminate variation completely. But we can think of how it arises

and then design the experiment in light of this information. For example, if we are

trying to compare two drugs, the experimental units would be subjects to whom

we administer the drugs. Subjects may vary in their responses to the drugs because

they are just inherently different, but they may also differ in their responses for

systematic reasons, such as gender, age, condition, etc. Thus, part of the variation

in the experimental units may be due to systematic causes we can identify (and

incorporate into the design).

• If we can attribute some of the variation in experimental units to systematic sources,

we could reduce the effect of the inherent variation among them. That is, we could

reduce our assessment of experimental error.

BLOCKING : The obvious strategy is to set up the experiment so that the systematic

variation among experimental units may be separated from the inherent variation. If we

group experimental units according to systematic features they share (i.e., block), we

can hopefully explain part of the variation that we observe across groups. The remaining

variation will be that arising within groups of experimental units. This variation would

comprise experimental error. Because the units in groups are apt to be “more alike,” the

hope is that experimental error will be smaller.
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RESULT : Experimental design is founded on the principle of reducing experimental error

by meaningful grouping of experimental units. Although we can not eliminate inherent

variability completely, we can try to be careful about what we consider to be inherent

variability by identifying all the possible systematic components of it.

Example 11.1. Current nitrogen fertilization recommendations for wheat include ap-

plications of specified amounts at specified states of plant growth. An experiment was

carried out which included t = 6 different nitrogen application timing and rate schedules.

The experiment was conducted in an irrigated field with a water gradient along one di-

rection of the experimental plot area as a result of irrigation. Since plant responses are

affected by variability in the amount of available moisture, the field plots were grouped

into four blocks, each consisting of the six plots (one plot per treatment), such that each

block occurred in the same part of the water gradient. In this example, the experimenter

recognises the fact that the water gradient in the field is a systematic source of varia-

tion. Thus, by making sure each block of land occurs in the same part of the gradient,

responses within a given block should be “more alike,” than, say, responses from other

blocks. The researcher has designed the experiment to control this source of variation.

Had she not, then, resulting differences in the treatments (rates/schedules) would be

confounded by the effect of the water gradient.

STATISTICAL MODELS : In Example 12.1, if we had ignored the effect of the water

gradient, we could have adopted the usual one-way layout model to compare the six

nitrogen fertilizers; i.e.,

Yij = µ + τi + εij,

for i = 1, 2, ..., 6 and j = 1, 2, 3, 4, where εijk ∼ iid N (0, σ2). Here, the experimental

error, σ2, includes all sources of variability not explained by the treatments, including

the source corresponding to the water gradient. An alternative model, which incorporates

water gradient variability, is the two-factor no-interaction ANOVA model

Yij = µ + τi + βj + εij,

for i = 1, 2, ..., 6 and j = 1, 2, 3, 4, where εijk ∼ iid N (0, σ2). The term βj describes the

PAGE 265



CHAPTER 11 STAT 3601

effect of the jth block. Insight is gained by examining these two models. In the one-way

model, the variability due to the different blocks is absorbed into σ2, the experimental

error variance. If there is variation among the four blocks, the two-way model explains

more of the total variability, and, thus, the experimental error variance σ2 is reduced.

RANDOMISATION : In terms of experimental design, randomisation involves the as-

signment of treatments to experimental units, based on the chosen design, by a chance

mechanism. The purpose is to ensure that no treatment is somehow favoured, or handi-

capped, so that the replicates receiving each treatment are representative of the popula-

tion except for the treatments. Non-random assignment usually leads to a biased design

plagued with confounding effects. As we have also discussed, randomisation ensures that

observations represent random samples from populations of interest. This ensures the

validity of statistical methods.

COMPLETE RANDOMISATION VERSUS RESTRICTED RANDOMISATION : In the

one-way layout model, complete randomisation is assumed; i.e., each fertilizer is to

be randomly assigned to the experimental units (this is a completely randomised

design). In this case, it is possible that four adjacent plots occurring in the same part

of the water gradient all receive the same fertilizer! In the two-way ANOVA model,

which is used to incorporate the blocks, experimental units are assumed to be randomly

assigned to plots within each block ; this is called restricted randomisation. In each

block, each treatment is represented only once (this is called a randomised complete

block design).

NOTE : Remember, the goal of any experiment is to compare the treatments (not the

blocks). By ensuring that treatments are represented in each block, where the experi-

mental units are more homogeneous, we enhance our ability to detect differences among

the treatments. Restricted randomisation protocols confer this benefit. Complete ran-

domisation does not confer this; i.e., treatment differences could be “masked” by the true

differences that exist among the blocks. Of course, if there is no true variation among

the blocks, then using a restricted randomisation protocol does not deliver any benefits.
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11.4 Experimental unit versus sampling unit

In the preceding discussion, we have seen how important the notions of experimental units

and replication are to experimental design. Correctly identifying the relevant experimen-

tal unit is one of the most important aspects of design. In many experiments, confusion

may arise. In our work so far, we have considered only cases where a single observation

of the response is made on each experimental unit; however, it is not uncommon to take

more than one observation on an experimental unit (this is called subsampling).

TERMINOLOGY : The sampling unit is the fraction of the experimental unit upon

which a single observation is made. To understand the distinction between experimental

units and sampling units, and its implications for design, consider the following examples:

Treatment Experimental Unit Sampling Unit Response

(i) Food rations 20 swine in a pen a single pig weight gain

(ii) Insecticides 50 plants on a plot a single plant # of insects

(iii) Drugs a single patient a single patient survival time

(iv) Variety 3 row plots of plants a single row yield

In (iii), the experimental unit and the sampling unit are the same. In the others:

(i) It is common to confine animals to the same pen or cage. Thus, it is simpler to

feed the entire pen the same ration rather than to feed them individually. However,

it is logical to observe a separate weight gain for each animal. Because the whole

pen receives the same ration, it constitutes an experimental unit. Weight gains are

measures on each pig within the pen, thus, they constitute the sampling units.

(ii) Similarly, it is easier to spray a whole plot with insecticide rather than individual

plants, but logical to count insects on each plant.

(iv) It is logistically simpler to plant large areas with the same variety; here, a 3-row

plot. However, the rows (within plot) may be sufficiently separated so that it is

possible to measure yield on each row separately.
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KEY PRINCIPLE : It is the experimental unit that is the relevant unit of experi-

mental material to consider when assessing available information, not the sampling unit.

Many of the disasters that occur in planning and analysing studies occur because people

misunderstand this difference. Consider the following example.

Example 11.2. A graduate student wanted to study the effects of two drugs on mice. He

collected 200 observations in the following way. Two mice were randomly assigned to each

drug. From each mouse, tissue samples were collected at 50 sites. The experimental

units were the mice because drugs were applied to the mice, not the tissue sites. There

are two sources of variation: mouse-to-mouse variation and within-mouse variation.

• The 50 observations (subsamples) on each mouse greatly reduce the within-variation

but do nothing to reduce the mouse-to-mouse variation. Relative to the mouse-to-

mouse variation, there are only two observations that have the same treatments.

Thus, each of the two treatment groups provides only one degree of freedom for esti-

mating the variance that applies to treatment comparisons; that is, the experiment

provides two degrees of freedom for the experimental error!

• In this example, we may know quite a bit about each mouse, with 50 observations

on each. But, we know almost nothing about how the treatments compare in the

population of such mice. We have only seen two mice on each treatment, so we

have only two observations per treatment.

• It is a common mistake for investigators to use too few replicates per treatment, but

take many subsamples on each. This is likely due to confusion about what is meant

by replication. The number of replicates (and not the number of subsamples per

replicate), is the important feature for determining precision and power. Thus,

it is better to have a large number of experimental units and a small number of

sampling units on each, rather than vice versa.

REMEMBER: Statisticians can not, in general, save an experiment that was performed

poorly or that was inundated with faulty technique.
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12 Random Effects Models and Subsampling

Complementary reading from Rao: Chapter 14 (§ 14.1-14.3 and § 14.6).

12.1 Introduction

Up until now, in our discussion of ANOVA models, we have assumed that factor levels

are fixed; that is, the levels used are the only levels of interest, and if we were to repeat

the experiment again, we would use the same levels. However, in some situations, it may

be more reasonable to assume that the levels of a factor, in fact, constitute a random

sample from a larger population of levels. In this case, we say that the factor is random.

12.2 Random effects in the one-way layout

ONE-WAY LAYOUT : Recall our effects model for the one-layout (with no subsampling)

Yij = µ + τi + εij,

for i = 1, 2, ..., t and j = 1, 2, ..., ni, where εij ∼ iid N (0, σ2). In this model, recall that µ

denotes the overall mean, and that τi denotes the effect of receiving treatment i. Consider

each of the following one-way layout experiments.

Example 12.1. In a potato-breeding experiment, we are interested in t = 3 different

fertilizer mixtures for which mean yields are to be compared (for one specific variety of

potatoes). Mixture 1 contains 80 percent sodium nitrate (NaNO3), Mixture 2 contains 90

percent NaNO3, and Mixture 3 contains 100 percent NaNO3. Here, we are interested in

comparing three specific treatments. If we repeated the experiment again, we would still

be interested in these three mixtures. In this example, there is a particular (or fixed) set

of treatments of interest; namely, the three mixtures of fertilizer. These levels of fertilizer

are best regarded as fixed.
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Example 12.2. Suppose that in our potato-breeding experiment, interest lies not in

comparing different levels of fertilizer, but rather comparing the yields for multiple vari-

eties for a fixed amount of NaNO3. There are thousands of varieties that are available

for study, so we take a random sample of t = 5 varieties and use those in the experiment.

The hope is that the results for the five varieties involved in the experiment may be gen-

eralised to gain insight into the behaviour of all varieties. In this example, the varieties

are best regarded as random.

DISTINCTION : The model Yij = µ + τi + εij may be appropriate for each situation in

Examples 12.1 and 12.2. However, there is an important distinction to be made:

• In Example 12.1, the particular treatments (mixtures) are the only ones of interest,

so there is no uncertainty involved with their selection. Thus, the τi are regarded

as fixed quantities, as they describe a particular set of fertilizers. In this situation,

the τi are referred to as fixed effects.

• In Example 12.2, there is additional uncertainty involved, because the treatments

(varieties) are no longer fixed; they are chosen at random from a large population of

treatments. The τi are regarded as random and are referred to as random effects.

Thus, it makes sense to think of the τi as random variables with variance, say,

σ2
τ . This variance σ2

τ characterises the variability in the population of all possible

treatments; in our example, the variability across all possible potato varieties. If

varieties are quite different in terms of yield, σ2
τ will be large. If yields are consistent

across varieties, σ2
τ will be small.

TERMINOLOGY : In fixed effects models (i.e., models where factors are treated as

fixed), we are interested in making statements about treatment means. In random

effects models (i.e., models where factors are treated as random), we do not care about

the means of the particular treatments. We are trying to make a statement about the

entire population of treatments based only on those we use in the experiment. Mixed-

effects models are models that include both fixed and random factors.
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Table 12.40: ANOVA table for the balanced one-way layout with fixed or random effects.

Source df SS MS F

Treatments t− 1 SS[T] MS[T] F = MS[T]
MS[E]

Error N − t SS[E] MS[E]

Total N − 1 SS[TOT]

IMPORTANT RESULT : In assessing treatment differences for the one-way layout, the

ANOVA computations are the same regardless of whether we are dealing with fixed or

random effects. The interpretation, however, will be different!! Since the computations

are the same, the calculation formulae from Chapter 2 apply; the ANOVA table for the

one-way random effects model is shown in Table 12.40.

HYPOTHESIS TESTS IN THE ONE-WAY LAYOUT : Consider the one-way effects

model Yij = µ + τi + εij, for i = 1, 2, ..., t and j = 1, 2, ..., ni, where εij ∼ iid N (0, σ2).

With fixed effects, we are interested in comparing the treatment means. Since the τis

are regarded as fixed quantities, we are interested in testing

H0 : τ1 = τ2 = · · · = τt = 0

versus

H1 : not H0.

In the random effects case, we are interested in the entire population of treatments.

In this situation, we assume that τi ∼ iid N (0, σ2
τ ) and that τi and εij are independent

random variables. If there are no differences among treatments, then σ2
τ = 0. Thus, with

random effects, we write the hypotheses as

H0 : σ2
τ = 0

versus

H1 : σ2
τ > 0.
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Table 12.41: EMS for the balanced one-way layout with fixed or random effects.

Expected mean squares (EMS)

Source of variation df Fixed effects Random effects

Treatments t− 1 σ2 +
n
Pt

i=1 τ2
i

t−1
σ2 + nσ2

τ

Error t(n− 1) σ2 σ2

NOTE : In either case, we judge the amount of evidence against H0 by comparing F to

a Ft−1,N−t distribution. As always, large values of F are not consistent with H0.

EXPECTED MEAN SQUARES : Table 12.41 shows the expected mean squares for both

models (the fixed-effects case assumes the τ+ = 0 side condition) when the design is

balanced; i.e., ni = n, for all i. In the fixed effects case, when H0 : τ1 = τ2 = · · · = τt = 0

is true, or, in the random effects case, when H0 : σ2
τ = 0 is true, MS[T] and MS[E] both

estimate the same quantity, and, hence, F = MS[T]/MS[E] should be close to one. In

both situations, when H0 is not true, we would expect F to get large. In unbalanced

designs, the formulae for expected mean squares changes to incorporate the unbalance

(see p. 651-2 in Rao), but this general notion of F statistics getting large (or staying

close to one) does not.

Example 12.3 (coal.sas). Core soil specimens are taken in each of six locations within

a territory being investigated for surface mining of bituminous coal. A random sample

of n = 4 specimens is taken from each of t = 6 randomly-selected locations and the

sulfur content (Y ) is observed for each specimen. Researchers want to know if different

locations are associated with different sulfur contents. The data are in Table 12.42. The

ANOVA table for these data, computed with the help of SAS, is below.

Source df SS MS F

Location 5 91.398 18.280 56.20

Error 18 5.856 0.325

Total 23 97.254
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Table 12.42: Sulfur content data.

Specimen

Location 1 2 3 4

A 15.2 16.8 17.5 16.2

B 13.1 13.8 12.6 12.9

C 17.5 17.1 16.7 16.5

D 18.3 18.4 18.6 17.9

E 12.8 13.6 14.2 14.0

F 13.5 13.9 13.6 14.1

ANALYSIS : In this example, researchers are most likely to be interested in a larger

population of locations, from which these 6 were randomly selected. Thus, in the context

of our one-way layout model, Yij = µ + τi + εij, the τi’s (i.e., the effects due to the

differences among locations) are best regarded as random. The test of H0 : σ2
τ = 0

would be rejected since F is too large (P < 0.0001). It looks like there is significant

variability among the locations in terms of their sulfur contents.

12.3 Variance components in the one-way layout

In this subsection, we introduce variance components in the one-way layout.

VARIANCE COMPONENTS : Consider the one-way balanced random-effects model

Yij = µ + τi + εij, for i = 1, 2, ..., t and j = 1, 2, ..., n, where τi ∼ iid N (0, σ2
τ ),

εij ∼ iid N (0, σ2), and τi and εij are independent. In this model, since both τi and

εij are random variables, the variance of any observation Yij is

σ2
Y = V (Yij) = σ2

τ + σ2.

The variances σ2
τ and σ2 are called variance components. As we see, there are two

components of variability; one that is due to the differences among possible treatments

(σ2
τ ) and one that is due to differences among experimental units (σ2).
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ESTIMATION : We would like to estimate the variance components in our one-way

random-effects model. In the last subsection, we learned that, in balanced designs,

E(MS[T]) = σ2 + nσ2
τ

E(MS[E]) = σ2.

If we use MS[E] as an estimate of E(MS[E]) and MS[T] as an estimate of E(MS[T]) (this

is basically the method-of-moments approach to estimation), we can see that

σ̂2
τ =

MS[T]− σ̂2

n

σ̂2 = MS[E].

The values σ̂2
τ and σ̂2 are called variance component estimators.

REMARK : Occasionally, this method of estimation can produce a negative estimate for

σ2
τ ; i.e., whenever MS[T] is smaller than MS[E]. Clearly, any population variance must

be nonnegative, so a negative estimate of it is viewed with some concern. One course of

action is to accept the estimate and use it as evidence that the true value of σ2
τ is close to

zero, assuming that inherent sampling variability led to the negative estimate. This has

an intuitive appeal, but it suffers from some theoretical difficulties. Personally, I might

consider this as evidence that the one-way model is, perhaps, not appropriate for the

data and reexamine the problem.

UNBALANCED DATA: Formulae for expected mean squares and variance component

estimators, in unbalanced experiments, appears on p. 651-3 Rao. The only thing that

changes in the estimates is that the n in the denominator of σ̂2
τ is replaced by

n0 = (t− 1)−1

(
N −

∑
i n

2
i

N

)
.

COEFFICIENT OF VARIATION : In some applications, it is of interest to get an idea

of variability on a relative basis; that is, we would like to have a unitless measure

that describes the variation in the data. The use of the coefficient of variation lies

partly in the fact that the mean and standard deviation tend to change together in many
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experiments. The coefficient of variation is a relative measure that expresses variability

as a percentage of the mean. In the one-way random effects model, the population

coefficient of variation (CV) is defined to be

CV =
σY

|µY | =

√
σ2

τ + σ2

|µY | .

An estimate of population CV is given by the sample CV; i.e.,

ĈV =

√
σ̂2

τ + σ̂2

|Y ++|
.

REMARK : CV is a useful quantity for comparing the results from different experiments,

but it can also be useful when attention is focused on a single experiment. It provides

an impression of the amount of variation in the data relative to the mean size of the

characteristic being measured. If CV is large, it is an indication that we will have a

difficult time learning about the “signal” (µY ) relative to the “noise” in the data (σY ).

Confidence interval estimation for the population CV is possible, but deriving a formula

for the interval is quite difficult.

INTRACLASS CORRELATION COEFFICIENT : In the one-way random effects model,

the intraclass correlation coefficient is defined as

ρI =
σ2

τ

σ2 + σ2
τ

.

The parameter ρI is the proportion of variability of the observed responses that can be

attributed to the variation in the treatment effects. For example, if ρI = 0.8, then 80

percent of the variability in the data is due to the differences among treatments. An

estimate of ρI is given by

ρ̂I =
σ̂2

τ

σ̂2 + σ̂2
τ

.

CONFIDENCE INTERVAL: Unlike the CV, finding a confidence interval for ρI is not

too difficult. In the balanced one-way random effects model, it follows that

(t− 1)MS[T]

σ2 + nσ2
τ

∼ χ2
t−1.

It is also not difficult to show that

(N − t)MS[E]

σ2
∼ χ2

N−t,
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and that MS[T] and MS[E] are independent statistics. These facts enable us to create a

pivotal quantity; namely,

MS[T]/(σ2 + nσ2
τ )

MS[E]/σ2
∼ Ft−1,N−t.

Hence, it follows that

P

{
Ft−1,N−t,1−α/2 ≤ MS[T]/(σ2 + nσ2

τ )

MS[E]/σ2
≤ Ft−1,N−t,α/2

}
= 1− α.

Straightforward algebra shows that the last probability statement is equivalent to

P

(
L

1 + L
≤ ρI ≤ U

1 + U

)
= 1− α,

where

L =
1

n

(
MS[T]

Ft−1,N−t,α/2 ×MS[E]
− 1

)

U =
1

n

(
MS[T]

Ft−1,N−t,1−α/2 ×MS[E]
− 1

)
.

Thus, (L/(1+L), U/(1+U)) is a 100(1−α) percent confidence interval for the intraclass

correlation coefficient ρI .

ESTIMATING THE OVERALL MEAN : Consider the one-way balanced random-effects

model Yij = µ+ τi + εij, for i = 1, 2, ..., t and j = 1, 2, ..., n. In some situations, it may be

of interest to write a confidence interval for µ, the overall mean. Using Y ++ as a point

estimator for µ, it is easy to see that, under our model assumptions, E(Y ++) = µ and

that V (Y ++) = (σ2 + nσ2
τ )/nt. Thus, standardising, we have

Z =
Y ++ − µ

(σ2 + nσ2
τ )/nt

∼ N (0, 1).

Recalling that
(t− 1)MS[T]

σ2 + nσ2
τ

∼ χ2
t−1,

it follows that

t =
Y ++ − µ

MS[T]/nt
=

Y ++−µ
(σ2+nσ2

τ )/nt√
(t−1)MS[T]

σ2+nσ2
τ

/(t− 1)
∼ tt−1.
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Thus, a 100(1− α) percent confidence interval for the overall mean µ is given by

Y ++ ± tt−1,α/2

√
MS[T]/nt.

Example 12.4. With the sulfur data from Example 12.3, we compute MS[T] = 18.280,

MS[E] = 0.325, and y++ = 15.367. The variance component estimates are given by

σ̂2
τ =

18.280− 0.325

4
= 4.489

σ̂2 = 0.325.

The coefficient of variation for these data is given by

ĈV =

√
σ̂2

τ + σ̂2

|y++|
=

√
4.489 + 0.325

15.367
= 0.143.

Thus, the total variation in the data is roughly 14.3 percent of the overall mean. An

estimate of the intraclass correlation coefficient ρI is given by

ρ̂I =
σ̂2

τ

σ̂2 + σ̂2
τ

=
4.489

0.325 + 4.489
= 0.932.

Thus, for these data, 93.2 percent of the total variation is due to the differences among the

treatments. Next we aim to construct a 95 percent confidence interval for the population

intraclass correlation ρI . To get the confidence interval, first, we compute

L =
1

n

(
MS[T]

Ft−1,N−t,α/2 ×MS[E]
− 1

)
=

1

4

(
18.280

3.3820× 0.325
− 1

)
= 3.908

U =
1

n

(
MS[T]

Ft−1,N−t,1−α/2 ×MS[E]
− 1

)
=

1

4

(
18.280

0.1572× 0.325
− 1

)
= 89.200.

Thus, the 95 percent confidence interval for ρI is
(

3.908

1 + 3.908
,

89.200

1 + 89.200

)
⇐⇒ (0.796, 0.989).

Thus, we are 95 percent confident that ρI is between 0.796 and 0.989. Finally, a 95

percent confidence interval for the overall mean sulfur content µ is given by

15.367± t5,0.025

√
18.280/4(6) ⇐⇒ (13.124, 17.610).

Thus, we are 95 percent confident that the true mean sulfur content µ is between 13.124

and 17.610.
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12.4 One-way ANOVA models with subsampling

In the last chapter, we discussed the difference between an experimental unit and a

sampling unit. The experimental unit is the element of experimental material that

receives an application of the treatment; thus, it is the entity of interest for assessing

experimental error. However, as we have already seen in the last chapter, it is not

uncommon to have several sampling units (i.e., subsamples) on each experimental unit.

Example 12.5. In an agricultural experiment, suppose that we are administering differ-

ent rations (treatments) to pigs. The location of the experiment is set up so that swine

are kept in pens, each consisting of 20 animals. The pigs are fed by introducing a trough

of ration into the pen. Here, the experimental unit is the pen, as the ration is applied to

it. The weight gain for each pig is recorded at the end of the experiment. The sampling

units are the individual pigs.

IMPORTANCE : In order to assess the effects of the treatments, we must be assured that

treatments are applied in a way, so that we may attribute differences observed to the

treatments. If, in Example 12.5, we had treated individual pigs as the experimental unit,

we see that this assurance would not be fulfilled−once the ration is introduced to the

pen, we have no control over how it is applied to individual pigs. Larger animals might

“squeeze out” smaller ones, so that the ration is not applied equally to all pigs. Thus,

different animals in the pen might exhibit different weight gains simply because they did

not receive the same application of the treatment. Treating the pigs as experimental units

would incorrectly assume that they all did receive the same application of the ration.

SUBSAMPLING : So far, we have discussed the analysis of variance procedure within the

context of one observation per experimental unit; that is, the experimental and sampling

units were the same. We now consider how the procedure might be extended to the case

of more than one sampling unit per experimental unit. This situation is referred to as

subsampling. To facilitate our discussion, we will assume, for simplicity, that a one-way

classification is appropriate.
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ONE-WAY ANOVA MODELS WITH SUBSAMPLING : When we have subsampling, we

may classify an individual observation (on a sampling unit now) as the kth subsample,

on the jth experimental unit, receiving treatment i; i.e.,

Yijk = µ + τi + εij + δijk,

for i = 1, 2, ..., t, j = 1, 2, ..., ni, and k = 1, 2, ..., sij, where τi is the effect associated with

treatment i (τi could be fixed or random), εij ∼ iid N (0, σ2
ε ), δijk ∼ iid N (0, σ2), and the

εij and δijk are independent.

NOTATION : In the one-way model with subsampling, t is the number of treatments (as

before), ni is the number of replicates (experimental units) on treatment i, and sij is

the number of subsampling units (subsamples) on the jth experimental unit receiving

treatment i. Note that there are two error terms! The term εij is the error associated

with the jth experimental unit receiving treatment i. The error εij quantifies how this

experimental unit varies in the population of all experimental units. The term δijk is

the additional error associated with the kth sampling unit, which we often refer to as

sampling error. For simplicity, we will assume that the design is totally balanced;

i.e., ni = n for all i, and sij = s, for all i and j.

FIXED VERSUS RANDOM TREATMENTS : As mentioned before, the τi can be treated

as fixed or random effects. If they are random, it is customary to assume that τi ∼
iid N (0, σ2

τ ) and that τi, εij, and δijk are mutually independent random variables.

REMARK : Even though our model is more complex now, as we have altered it to incor-

porate data from experiments which use subsampling, it is important to remember that

our main goal has not changed; namely, we are interested in comparing the treatments.

If the τi are fixed, we want to compare the treatment means. If the τi are random, we

want to examine the variation among treatments.

Example 12.6. Suppose an experiment is conducted to compare the effect of 5 different

doses of a toxic agent (treatments) on the birth weights of rats. For each dose, several

pregnant female rats are given the particular dose. Thus, the female rats are the experi-
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mental unit, as they receive an application of the treatment. For each mother, suppose

that birth weight is recorded for each rat pup. Thus, the rat pups are the sampling

units. For a given mother rat, all of her pups are, of course, not identical; rather, they

exhibit variability among themselves. Furthermore, mother rats vary inherently across

themselves. In the model, εij characterises the mother-to-mother variation. The δijk

characterises the additional variation that might be present because all rat pups on a

given mother are not exactly alike.

• Recall that we think of experimental error as measuring the inherent variation in

responses on experimental units; that is, the variation in the data that we attribute

to things other than the systematic effects of the treatments. If we think about

this variation in the current context, it is clear that there are now two sources of

inherent variation that may make responses on experimental units differ:

– variation among experimental units, and

– variation among sampling units within experimental units.

• Thus, if we wish to assess how much of the overall variation in the data is due to

systematic effects of the treatments, we must weigh this against the variation in

the data due to inherent, unexplained sources. Both variation among experimental

units (e.g., mother rats) and among sampling units (e.g., rat pups within mother

rats) contribute to this latter source of variation.

• The result is that our assessment of error must measure the variation both among

and within experimental units. In our linear model, then, it must measure the

total variability associated with the error terms εij and δijk.

TERMINOLOGY : A model such as Yijk = µ+τi+εij+δijk, may be referred to as a nested

model. The data may be classified according to a hierarchical structure; experimental

units within treatment groups, and then sampling units within experimental units. The

units at the “inner” level are entirely contained within a unit at the “outer” level of
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Table 12.43: ANOVA table for the balanced one-way classification with subsampling.

Source of variation df SS MS F

Treatments t− 1 SS[T] MS[T] FT = MST
MSE

Experimental Error t(n− 1) SS[E] MS[E] FS = MSE
MSS

Sampling Error tn(s− 1) SS[S] MS[S]

Total N − 1 SS[TOT]

this hierarchy; hence, the term “nested.” In the rat example, rat pups are nested within

mother rats (which, in turn, are nested within treatment dose groups); in Example 12.5,

the pigs are nested within pens (which, in turn, are nested within rations). To emphasise

the nested structure in the subsampling model notation, it would not be inappropriate

to write Yijk = µ + τi + εj(i) + δk(ij).

ANOVA FOR THE ONE-WAY LAYOUT WITH SUBSAMPLING : Our goal is to con-

struct the ANOVA table for the balanced one-way model with subsampling; i.e.,

Yijk = µ + τi + εij + δijk,

for i = 1, 2, ..., t, j = 1, 2, ..., n, and k = 1, 2, ..., s. The ANOVA table will be the same

regardless of whether the τi are treated as fixed or random. The breakdown of SS[TOT]

into its different sources of variation is based on the identity

t∑
i=1

n∑
j=1

s∑

k=1

(Yijk − Y +++)2

︸ ︷︷ ︸
SS[TOT]

= ns

t∑
i=1

(Y i++ − Y +++)2

︸ ︷︷ ︸
SS[T]

+ s

t∑
i=1

n∑
j=1

(Y ij+ − Y i++)2

︸ ︷︷ ︸
SS[E]

+
t∑

i=1

n∑
j=1

s∑

k=1

(Yijk − Y ij+)2

︸ ︷︷ ︸
SS[S]

;

The ANOVA table appears in Table 12.43. As usual, N = tns denotes the total number

of observations. The degree of freedom values are analogous to those obtained from the

nested factorial ANOVA table from Chapter 10 (this should not be surprising, given the

hierarchical structure that we just alluded to).
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HAND COMPUTATION FOR THE ONE-WAY MODEL WITH SUBSAMPLING : If

you want to compute the ANOVA table by hand, it is easiest to use the following steps.

1. Calculate the correction term for the mean.

CM =
1

tns

(
t∑

i=1

n∑
j=1

s∑

k=1

Yijk

)2

= Y 2
+++/N.

2. Calculate SS[TOT], the total sum of squares

SS[TOT] =
t∑

i=1

n∑
j=1

s∑

k=1

Y 2
ijk − CM.

3. Calculate SS[T], the treatment sum of squares

SS[T] =
1

ns

t∑
i=1

(
n∑

j=1

s∑

k=1

Yijk

)2

− CM.

4. Calculate the Among Experimental Units SS (an intermediate calculation−this

does not appear in the ANOVA table; loosely speaking, it measures the deviation

of individual experimental units about the overall mean; thus, it does not take into

account the differences among treatment means).

Among Experimental Units SS =
1

s

t∑
i=1

n∑
j=1

(
s∑

k=1

Yijk

)2

− CM.

5. Find SS[E], the experimental error sum of squares, by subtraction.

SS[E] = Among Experimental Units SS− SS[T].

6. Find SS[S], the sampling error sum of squares, by subtraction.

SS[S] = SS[TOT]− Among Experimental Units SS.

Although Among Experimental Units SS is not an interesting quantity for our tests,

and does not explicitly appear in a row of the ANOVA table, it is useful for computation.

As you might suspect, SAS has little difficulty with the computations.
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EXPECTED MEAN SQUARES FOR THE ONE-WAY LAYOUT WITH SUBSAM-

PLING : To gain insight into the nature of the different hypothesis tests and the suitability

of the F ratios for testing them, we construct a table of expected mean squares, just as

we did when there was no subsampling. Consider the balanced one-way classification

model with subsampling; i.e.,

Yijk = µ + τi + εij + δijk,

for i = 1, 2, ..., t, j = 1, 2, ..., n, and k = 1, 2, ..., s, where τi is the effect associated with

treatment i (τi could be fixed or random), εij ∼ iid N (0, σ2
ε ), δijk ∼ iid N (0, σ2), and the

εij and δijk are independent. In our model, we have the following random quantities:

• εij, representing errors due to experimental units. We let σ2
ε denote the variance in

the population of experimental units.

• δijk, representing errors due to sampling units. We let σ2 denote the variance in

the population of sampling units.

• τi, representing the effects of the treatments, only if the treatment levels are con-

sidered random. In this situation, we assume that τi ∼ iid N (0, σ2
τ ) and that τi, εij,

and δijk are mutually independent random variables.

CONVENTION : It is convention in most texts on analysis of variance to use the symbol

σ2 to denote the variance associated with the “smallest” unit of measurement; that is, the

unit on which individual observations arise. Here, this is the sampling unit (Rao violates

this convention and writes σ2
S for the sampling unit). In the case of one sampling unit per

experimental unit, we used σ2 to denote the variance in the population of experimental

units (the “smallest” unit of measurement in that setting); here, however, the usage

is different. So, keep in mind that here σ2
ε is the variance of interest with regard to

experimental units, and σ2 denotes the variance of the sampling units.

HYPOTHESIS TESTS : In our one-way model with subsampling, there are two tests

that are of interest. Theoretical justification for the appropriateness of each test can be

gleaned from the expected mean squares in Table 12.44.
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Table 12.44: EMS for the balanced one-way layout with subsampling.

Expected mean square (EMS)

Source of variation df Fixed effects Random effects

Treatments t− 1 σ2 + sσ2
ε +

ns
Pt

i=1 τ2
i

t−1
σ2 + sσ2

ε + nsσ2
τ

Experimental Error t(n− 1) σ2 + sσ2
ε σ2 + sσ2

ε

Sampling Error tn(s− 1) σ2 σ2

• First, we focus on testing for differences among treatments. Regardless of whether

the treatment levels are best regarded as fixed or random, the appropriate statistic

to use is

FT =
MS[T]

MS[E]
.

From Table 12.44, we see that when H0 : τ1 = τ2 = · · · = τt = 0 (fixed effects

hypothesis) or H0 : σ2
τ = 0 (random effects hypothesis) is true, both MS[T] and

MS[E] estimate the same quantity; namely σ2 + sσ2
ε ; thus, their ratio should be

close to one under either hypothesis. When either is not true, one would expect FT

to be large. Values of FT are compared to a Ft−1,t(n−1) probability distribution.

• Also available is a test to diagnose variation among experimental units. Specifically,

we can test H0 : σ2
ε = 0 versus H1 : σ2

ε > 0 using the statistic

FS =
MS[E]

MS[S]
.

This is an appropriate test regardless of whether the treatments are fixed or random,

since when H0 : σ2
ε = 0 is true, both MS[E] and MS[S] estimate the same quantity.

Values of FS larger than Ft(n−1),tn(s−1),α are deemed significant at the α level.

VARIANCE COMPONENTS : As in the random-effects model without subsampling, we

have different variance components corresponding to the subsampling model. Under our

assumptions associated with the model Yijk = µ + τi + εij + δijk, it is easy to show that

V (Yijk) =





σ2
ε + σ2, if τi are fixed

σ2
τ + σ2

ε + σ2, if τi are random.
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The variances σ2
τ , σ2

ε , and σ2 are called variance components. There are two or three

components of variability, depending on whether the treatment levels are regarded as

fixed or random, respectively. Like before, it is of interest to estimate these components.

Doing so helps us quantify the amount of variability due to the different sources.

FIXED EFFECTS : When the τi are best regarded as fixed, we see from Table 12.44,

E(MS[E]) = σ2 + sσ2
ε

E(MS[S]) = σ2.

Using MS[E] as an estimate of E(MS[E]) and MS[S] as an estimate of E(MS[S]), we have

σ̂2
ε =

MS[E]− σ̂2

s

σ̂2 = MS[S].

RANDOM EFFECTS : When the τi are regarded as random, we see from Table 12.44,

E(MS[T]) = σ2 + sσ2
ε + nsσ2

τ

E(MS[E]) = σ2 + sσ2
ε

E(MS[S]) = σ2.

Using MS[T] as an estimate of E(MS[T]), MS[E] as an estimate of E(MS[E]), and MS[S]

as an estimate of E(MS[S]), we see that

σ̂2
τ =

MS[T]− σ̂2 − sσ̂2
ε

ns

σ̂2
ε =

MS[E]− σ̂2

s

σ̂2 = MS[S].

Thus, we can estimate the variance components in either the fixed effects or random

effects models that incorporate subsampling.

Example 12.7 (cholesterol.sas). Three different drugs for the treatment of high

cholesterol are produced by three different manufacturers, each of which produces its

drug at one of 2 different plants, as shown in Table 12.45. The measurements given are

PAGE 285



CHAPTER 12 STAT 3601

Table 12.45: Cholesterol concentration data.

Drug 1 Drug 2 Drug 3

Plant 1 Plant 2 Plant 1 Plant 2 Plant 1 Plant 2

Female 1 102 103 108 109 104 105

Female 2 104 104 110 108 106 107

cholesterol concentrations (mg/100 ml of plasma) for human females treated with the

drugs. A question of interest is whether cholesterol levels for female subjects differ among

the three treatments (drugs). These are the only three drugs of interest in the study;

hence, the levels of drug are best regarded as fixed effects. The two plants are different

for each of the different drugs (manufacturers). Furthermore, for each plant, 2 different

females are used, so there are N = 12 total measurements. The only classification scheme

for these data that makes sense is Yijk = µ + τi + εij + δijk, with

Treatments Drugs t = 3

Experimental Units Plants n = 2

Sampling Units Female subjects s = 2

HAND COMPUTATIONS : The correction term, for fitting the overall mean, is

CM =
1

N

(
3∑

i=1

2∑
j=1

2∑

k=1

Yijk

)2

=
(1270)2

12
= 134408.33.

The total sum of squares is given by

SS[TOT] =
3∑

i=1

2∑
j=1

2∑

k=1

Y 2
ijk − CM = 134480.00− 134408.33 = 71.67,

and the treatment sum of squares is given by

SS[T] =
1

4

3∑
i=1

(
2∑

j=1

2∑

k=1

Yijk

)2

− CM = 134469.50− 134408.33 = 61.17.

The intermediate measure of variability calculation

Among EUs SS =
1

2

3∑
i=1

2∑
j=1

(
2∑

k=1

Yijk

)2

− CM = 134471.00− 134408.33 = 62.67
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Figure 12.34: Cholesterol levels for three different drugs.

helps us get the remaining sums of squares by subtraction; i.e.,

SS[E] = Among Experimental Units SS− SS[T] = 62.67− 61.17 = 1.50

SS[S] = SS[TOT]− Among Experimental Units SS = 71.67− 62.67 = 9.00.

Putting all the above calculations together, we can construct the ANOVA table:

Table 12.46: ANOVA table for cholesterol data in Example 12.7.

Source of variation df SS MS F

Treatments 2 61.17 30.58 61.16

Experimental Error 3 1.50 0.50 0.33

Sampling Error 6 9.00 1.50

Total 11 71.67

ANALYSIS : The statistic FT = 61.16 says that there is a clear difference in mean choles-

terol levels among the three drugs (e.g., F2,3,0.05 = 9.55); that is, H0 : τ1 = τ2 = τ3 = 0
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is rejected. To test for variation among plants; i.e., H0 : σ2
ε = 0 versus H1 : σ2

ε > 0, we

see that FS = 0.33 is not large (e.g., F3,6,0.05 = 4.76). There is not enough evidence to

suggest that there is significant variation among plants.

PAIRWISE INTERVALS : Since there are significant differences among drugs, let’s see

where they are; we’ll do this by writing simultaneous pairwise intervals for τ2 − τ1,

τ3 − τ1, and τ3 − τ2. To construct the confidence interval for τ2 − τ1, we can use the

point estimator Y 2++ − Y 1++, the difference in the sample means. Under our model

assumptions, straightforward calculations show that (verify!)

E(Y 2++ − Y 1++) = τ2 − τ1

and

V (Y 2++ − Y 1++) =
2(σ2 + 2σ2

ε )

4
.

However, note that MS[E] estimates σ2 + 2σ2
ε (see Table 12.44). Since Y 2++ − Y 1++ is a

linear combination of the normally distributed Yijk’s, then Y 2++−Y 1++, too, is normally

distributed. A 95 percent confidence interval for τ2 − τ1 is, thus, given by

(Y 2++ − Y 1++)± t3,0.025 ×
√

2MS[E]

4
.

The other confidence intervals are formed similarly. To adjust for multiplicity, we can

use a Tukey correction. The simultaneous intervals then take the form

(Y 2++ − Y 1++)± q3,3,0.05 ×
√

MS[E]

4

(Y 3++ − Y 1++)± q3,3,0.05 ×
√

MS[E]

4

(Y 3++ − Y 2++)± q3,3,0.05 ×
√

MS[E]

4

(the
√

2 term is absorbed in q3,3,0.05). These are simultaneous 95 percent confidence

intervals for the differences. For these data, y1++ = 103.25, y2++ = 108.75, y3++ =

105.50, q3,3,0.05 = 5.91 (not in Rao), and MS[E] = 0.50. The simultaneous intervals

are given by (3.41,7.59), (0.16, 4.34), and (−1.16,−5.34), respectively. Based on these
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intervals, it looks as though the Drug 1 is associated with the smallest mean cholesterol

level, followed by Drug 3 and Drug 2, in that order.

UNEQUAL REPLICATION AND NUMBERS OF SUBSAMPLES : When the numbers

of replicates and/or subsamples are not the same, the same general procedure we used

may be used to construct an analysis of variance table; i.e., partitioning SS[TOT] into

its components. However, the imbalance leads to some difficulties.

• For example, degrees of freedom become more difficult to calculate. Recall that in

Table 12.44, each expected mean square was equal to the one below it plus a term

representing extra variation. This nice property no longer holds exactly when the

numbers of subsamples are not the same.

• Intuitively, if we have different numbers of subsamples on each experimental unit,

the quality of information on each experimental unit is different. We would, thus,

expect trying to sort out the different sources of variation to be much harder.

• The result is that exact tests of hypotheses may no longer be carried out. Rather,

approximate tests must be conducted. This is analogous to the situation where

one is testing the difference between two normal means with unequal variances.

The basic problem here is the same; that is, we no longer have the same quality of

information (as measured by variance) on all experimental units under study.

• Just keep in mind that care must be taken under these circumstances.

12.5 Using variance components in the one-way layout with

subsampling

We have seen in our linear models for the one-way classification, both with and without

subsampling, that we construct mean squares to estimate the variability due to different

sources, e.g., treatments, experimental units, sampling units. When we have subsam-

pling, recall, from Table 12.44, that this involves variances of various error terms. For
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example, in the case of random treatment effects and subsampling with equal replication

and numbers of subsamples, MS[T] estimates

σ2 + sσ2
ε + nsσ2

τ .

As noted earlier, quantities such σ2, σ2
ε , and σ2

τ are called variance components. Here,

the variability we might observe across treatments is associated with three sources: in-

dividual sampling units (σ2), experimental units (σ2
ε ), and treatments (σ2

τ ).

DESIGN CONSIDERATIONS : In the planning stages of any experiment, the researcher

often has desired statistical objectives. In an experiment involving subsamples, we may,

in the planning stages, wonder how best to allocate the available resources. We might

• have many experimental units with few sampling units on each, or

• have less experimental units with more sampling units on each.

Generally, as we have discussed, we would like to have enough experimental units to get a

good idea of the population; however, we may “fine tune” how we do this if we understand

the relative sizes of experimental and sampling error, as well as considerations such as

whether subsamples are expensive or difficult to obtain or whether it is impractical to

have too many experimental units. Previous experimental data may be used to plan

future experiments and give the investigator information on these questions. Estimates

of the relative magnitudes of the variance components, σ2 and σ2
ε , may be used to help

guide our planning. In particular, suppose we wish to conduct a future experiment with

t treatments and are considering different numbers of replicates, n∗, say, and different

numbers of sampling units on each, say, s∗. Given estimates of σ2 and σ2
ε (from previous

studies, perhaps), we can use this information to help us decide on sensible values of the

number of replicates and the number of sampling units. For example, if our estimate of

σ2
ε is large and our estimate of σ2 is small, then, intuitively, it would be best to use more

experimental units with fewer sampling units. Thus, as you can see, this information,

along with associated costs of doing the experiment different ways, can be used to decide

how best to use resources in the future.

PAGE 290



CHAPTER 13 STAT 3601

13 ANOVA Models with Block Effects

Complementary reading from Rao: Chapter 15 (§ 15.1-15.2).

13.1 Introduction

As we have already discussed, a common theme in experimental design is the reduction

of experimental error by the meaningful grouping of experimental units. If we can

attribute some of the variation in experimental units to systematic sources, we can reduce

the effect of the inherent variation among them; that is, we could reduce our assessment

of experimental error. Proper use of meaningful grouping (i.e., blocking) allows us to

achieve this goal.

WHEN BLOCKING MIGHT BE USED : When no sources of variation, other than treat-

ments, are anticipated, blocking will probably not add very much precision; i.e., it will not

reduce our assessment of experimental error. If the experimental units are expected to be

fairly uniform, then a completely randomised design (CRD) will probably be sufficient.

In many situations, however, other systematic sources of variation are anticipated.

• In a field experiment, adjacent plots will tend to be more alike than those far apart.

• Observations made with a particular measuring device, or, by a particular individ-

ual, may be more alike than those made by different devices or individuals.

• Plants kept in one greenhouse may be more alike than those from other greenhouses.

• Patients treated at the same hospital may be more alike than those treated at

different hospitals.

REALISATION : In such instances, there is a potential source of systematic variation

that we may identify in advance. This suggests that we may wish to group experimental

units in a meaningful way on this basis.
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BLOCKING : In any experiment, we seek to investigate differences among the treatments

(whether they be fixed or random). When experimental units are considered in mean-

ingful groups, they may be thought of as being classified not only according to treatment

assignment, but also according to which group (i.e., block) they belong (e.g., position in

field, device or observer, greenhouse, hospital, etc.). By accounting for differences among

experimental units through the use of meaningful grouping, we can increase our ability

to detect treatment differences, if they exist.

13.2 The randomised complete block design

When experimental units may be meaningfully grouped, a completely randomised design

(CRD) is suboptimal. In this situation, an alternative strategy for assigning treatments

to experimental units, which takes advantage of the grouping, should be used; namely, a

randomised complete block design (RBCD). The meaningful groups of experimen-

tal units are called blocks.

• We will assume, for our discussion, that each treatment appears the same number

of times in each block; hence, the term “complete” block design. The simplest case

is that where each treatment appears exactly once in each block.

• The number of blocks used is denoted by r. The number of treatments used is

denoted by t.

• To set up such a design, randomisation is carried out in the following way:

– assign experimental units to blocks on the basis of the meaningful grouping

factor (e.g., greenhouse, hospital, etc.).

– randomly assign treatments to experimental units within each block.

This randomisation protocol is sometimes called restricted randomisation, be-

cause randomisation is carried out only within each block.
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RATIONALE : Experimental units within blocks are “as alike as possible,” so observed

differences among them should be mainly attributable to the treatments. To ensure this,

all experimental units within a block should be treated as uniformly as possible; e.g.,

• in a field, all plots should be harvested at the same time of day,

• all measurements using a single device should be made by the same individual if

different people use it in a different way,

• all plants in a greenhouse should be watered at the same time of day or by the

same amount,

• treatments should be administered to patients following the same protocol.

POTENTIAL ADVANTAGES : If blocking is really warranted, then a RCBD offers

greater precision than is possible with a CRD (which ignores the need for block-

ing). Also, we will have an increased scope of inference, because more experimental

conditions may be included.

13.3 Incorporating block effects in the two-way layout

13.3.1 No replication, no subsampling

We assume here that one observation is taken on each experimental unit (i.e., that there is

no subsampling). We will also assume that a RCBD is used with exactly one experimental

unit per treatment per block (i.e., there is no replication). For this situation, we may

classify an individual observation as being from the jth block on the ith treatment as

Yij = µ + τi + ρj + εij,

for i = 1, 2, ..., t and j = 1, 2, ..., r, where εij ∼ iid N (0, σ2). Here, t denotes the number

of treatments, r denotes the number of blocks, µ denotes the overall mean, τi is the
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effect of receiving treatment i, and ρj is the effect of being in block j. As one can see,

this is simply a two-factor ANOVA model without interaction. It is assumed that the

block-treatment interaction is error so that an estimate of σ2 is available.

FIXED VERSUS RANDOM EFFECTS : As in the one-way classification, the treatment

and block effects, τi and ρj, respectively, may be best regarded as fixed or random.

We have already discussed the notion of regarding treatments as having fixed or random

effects. We may also apply the same reasoning to blocks. Consider the following scenarios:

1. Both τi and ρj are best regarded as having fixed effects. In this case, both describe

a particular set of conditions that will not vary across experiments. For example,

we might be comparing three drugs (treatments) for 2 breeds of cattle (blocks). If

these are the only drugs and breeds that are of interest, then both factors are fixed.

2. Both τi and ρj are best regarded as having random effects; that is, τi and ρj are

treated as random variables drawn from the populations of all possible treatments

and blocks, respectively, with variances σ2
τ and σ2

ρ. For example, suppose that four

machines (treatments) are chosen at random from all machines at a company, and

three machine operators (blocks) are chosen at random from all operators employed

at the company. In this case, both factors are random. The usual additional

assumptions are that τi ∼ iid N (0, σ2
τ ), ρj ∼ iid N (0, σ2

ρ), and that τi, ρj, and εij

are independent random variables.

3. We may also have the situation of a mixed model; i.e., one that contains both

fixed and random effects. Most often, in this situation, it is the treatment effects

τi that are best regarded as fixed and the block effects ρj are treated as random.

For example, say that we want to compare three fertilizers (treatments) in two

different greenhouses (blocks). The three fertilizers are the only ones of interest,

so the treatments are fixed. However, if we hope that our inferences apply to all

possible greenhouses (not just the two we used!) then we regard the greenhouses

as random. The usual additional assumptions are that ρj ∼ iid N (0, σ2
ρ), and that

ρj and εij are independent random variables.
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Table 13.47: ANOVA table for the RCBD; one observation per treatment per block and

no subsampling.

Source df SS MS F

Treatments t− 1 SS[T] MS[T] FT = MS[T]
MS[E]

Blocks r − 1 SS[B] MS[B] FB = MS[B]
MS[E]

Error (t− 1)(r − 1) SS[E] MS[E]

Total N − 1 SS[TOT]

ANOVA TABLE : Our goal is to write the ANOVA table for the two-way classification

model; i.e., Yij = µ + τi + ρj + εij, for i = 1, 2, ..., t and j = 1, 2, ..., r, which is our linear

model for incorporating treatment and block effects with no subsampling and with only

one observation per treatment per block. The table is based on the identity

t∑
i=1

r∑
j=1

(Yij − Y ++)2

︸ ︷︷ ︸
SS[TOT]

= r

t∑
i=1

(Y i+ − Y ++)2

︸ ︷︷ ︸
SS[T]

+ t

r∑
j=1

(Y +j − Y ++)2

︸ ︷︷ ︸
SS[B]

+
t∑

i=1

r∑
j=1

(Yij − Y i+ − Y +j + Y ++)2

︸ ︷︷ ︸
SS[E]

.

The total number of observations is N = tr. Degrees of freedom follow their usual

patterns. All computations, even the F statistics, are the same regardless of whether

the treatments (or blocks) are fixed or random. The interpretations, however, will be

different depending on which situation we are in.

HAND COMPUTATION FOR SUMS OF SQUARES : To construct the ANOVA table

for the RCBD with one observation per treatment per block and no subsampling, it is

easiest to use SAS. However, the following computing formulae are also helpful if you

don’t like computers. First, the correction term for fitting the overall mean is

CM =
1

tr

(
t∑

i=1

r∑
j=1

Yij

)2

= Y 2
++/N.

PAGE 295



CHAPTER 13 STAT 3601

The total sum of squares is given by

SS[TOT] =
t∑

i=1

r∑
j=1

Y 2
ij − CM.

The treatment and block sums of squares are given by

SS[T] = r

t∑
i=1

(Y i+ − Y ++)2 =
1

r

t∑
i=1

Y 2
i+ − CM

SS[B] = t

r∑
j=1

(Y +j − Y ++)2 =
1

t

r∑
j=1

Y 2
+j − CM.

The error sum of squares is then computed by subtraction; i.e.,

SS[E] = SS[TOT]− SS[T]− SS[B].

TESTING FOR TREATMENT DIFFERENCES : With fixed treatments effects, we are,

as before, interested in comparing the treatment means; that is, we would like to test

H0 : τ1 = τ2 = · · · = τt = 0 versus H1 : not H0. With random effects, we are interested

in the entire population of treatments. If there are no differences among treatments,

then σ2
τ = 0. Thus, with random effects, we write the hypotheses as H0 : σ2

τ = 0 versus

H1 : σ2
τ > 0. In either case, we judge the amount of evidence against H0 by comparing

FT to a Ft−1,(t−1)(r−1) distribution. Large values of FT are not consistent with H0.

TESTING FOR BLOCK EFFECTS : In most experiments, whether or not there are block

differences is not really a main concern, because, by considering blocks up front, we have

acknowledged them as a possible nontrivial source of variation. This notwithstanding,

there is nothing in the two-way ANOVA model to keep one from testing block effects (see

note below). With fixed block effects, we would like to test H0 : ρ1 = ρ2 = · · · = ρr = 0

versus H1 : not H0. With random block effects, we are interested in the entire population

of blocks, so we test H0 : σ2
ρ = 0 versus H1 : σ2

ρ > 0. In either case, we judge the amount

of evidence against H0 by comparing FB to a Fr−1,(t−1)(r−1) distribution. Large values of

FB are not consistent with H0.

NOTE : Many statisticians have argued that tests for block effects, in fact, should not be

conducted. The reason stems from the restricted randomisation protocol used to assign
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Table 13.48: EMS for the RCBD with one observation per treatment per block and no

subsampling.

Expected mean squares (EMS)

Source of variation Both fixed Both random Mixed

Treatments σ2 +
r
Pt

i=1 τ2
i

t−1
σ2 + rσ2

τ σ2 +
r
Pt

i=1 τ2
i

t−1

Blocks σ2 +
t
Pr

j=1 ρ2
j

r−1
σ2 + tσ2

ρ σ2 + tσ2
ρ

Error σ2 σ2 σ2

treatments to the experimental units. What affect does this have on FB? Some authors

have argued that the key justification for the usual ANOVA F tests is the use of complete

randomisation (instead of the normality assumption). Of course, complete randomisation

is not used in RCBDs. Others have argued that the two-way additive ANOVA model

Yij = µ+τi+ρj +εij, being a very simplistic model, is not that appropriate for the RCBD,

citing that it isn’t clear how the existence of additive block effects reduces variability in a

two-way ANOVA. However, as an approximate procedure to investigate the effect of the

blocking factor, examining FB is certainly not unreasonable. If it is large, it implies that

the blocking factor has a large effect and is probably helpful in improving the precision

of the comparison of treatment means. Of course, this is the exact reason why one might

use blocking in the first place, so one might expect FB to be large, if, in fact, there was

solid evidence that blocking should have been used to begin with. On the other hand,

small values of FB might suggest that blocking doesn’t really add too much precision.

EXPECTED MEAN SQUARES : As we have seen before, it is instructive to examine the

expected mean squares under our assumptions for the two-factor ANOVA model without

interaction; i.e., Yij = µ + τi + ρj + εij. Formulae for expected mean squares depend

on whether the treatments (and blocks) are fixed or random. See Table 13.48. Careful

examination of the expected mean squares allows insight into the suitability of the tests

just described. For the fixed block and/or treatment effects, the usual “sum-to-zero” side

conditions are assumed; i.e., τ+ = 0 and ρ+ = 0.
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Table 13.49: Wheat yield data.

Variety

Block A B C D E F G Y+j

I 10 9 11 15 10 12 11 78

II 11 10 12 12 10 11 12 78

III 12 13 10 14 15 13 13 90

IV 14 15 13 17 14 16 15 104

V 13 14 16 19 17 15 18 112

Yi+ 60 61 62 77 66 67 69 Y++ = 462

Example 13.1 (wheat.sas). The data in Table 13.49 are yields (Y , measured in

bushels/acre) from an agricultural experiment set up in a RCBD. The experiment was

designed to investigate the differences in yield for t = 7 varieties of wheat, labelled A-G

(these are the only varieties of interest). A field was divided into r = 5 blocks, each

containing seven plots. In each block, the seven plots were assigned at random to be

planted with the seven varieties, one plot for each variety.

CALCULATIONS : The correction term for fitting the overall mean is

CM = Y 2
++/N = (462)2/35 = 6098.4

The total sum of squares is given by

SS[TOT] =
t∑

i=1

r∑
j=1

Y 2
ij − CM = (102 + 92 + · · ·+ 182)− 6098.4 = 215.6.

The treatment and block sums of squares are given by

SS[T] =
1

r

t∑
i=1

Y 2
i+ − CM =

1

5
(602 + 612 + · · ·+ 692)− 6098.4 = 41.6.

SS[B] =
1

t

r∑
j=1

Y 2
+j − CM =

1

7
(782 + 782 + · · ·+ 1122)− 6098.4 = 134.2.

The error sum of squares is then computed by subtraction; i.e.,

SS[E] = 215.6− 41.6− 134.2 = 39.8.
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Figure 13.35: Wheat yield data for different varieties.

Table 13.50: RCBD ANOVA for the wheat yield data in Example 13.1.

Source df SS MS F

Treatments 6 41.6 6.93 4.18

Blocks 4 134.2 33.54 20.21

Error 24 39.8 1.66

Total 34 215.6

ANALYSIS : The ANOVA table for the wheat data appears in Table 13.50. There looks

to be significant differences in mean yields among the seven varieties since the statistic

FT = 4.18 is large (e.g., F6,24,0.05 = 2.508). Also, the statistic FB = 20.21 provides strong

evidence that blocking, was, in fact, useful. Of course, as usual FT doesn’t provide insight

as to where the differences among mean yields actually are located, so let’s construct

pairwise Tukey intervals to find them. For example, to construct a confidence interval

for τ2 − τ1, we would use the point estimator Y 2+ − Y 1+. It is not difficult to show that
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E(Y 2+ − Y 1+) = τ2 − τ1 and that

V (Y 2+ − Y 1+) =
2σ2

5
.

Replacing σ2 with its unbiased estimate MS[E], and noting that Y 2+ − Y 1+ is normally

distributed (under our model assumptions), it follows that

(Y 2+ − Y 1+)± t24,0.025 ×
√

2MS[E]

5
.

is a 95 percent confidence interval for τ2 − τ1. To adjust for multiplicity, our
(
7
2

)
simul-

taneous 95 percent confidence intervals for τi − τi′ , for i < i′, take the form

(Y i′+ − Y i+)± q7,24,0.05 ×
√

MS[E]

5

(the
√

2 term is absorbed in q7,24,0.05). These intervals are provided in the accompanying

SAS output; it looks as though the yields for varieties 1, 2, and 3 are significantly lower

than the yield for variety 4, but that no other significant differences exist.

USEFULNESS OF BLOCKING : From these results, note that blocking served to explain

much of the overall variation. To appreciate this further, suppose that we had not

analysed the experiment in Example 13.1 as a RCBD, but, instead, had just analysed

the experiment according to a CRD (and that we ended up with the same data). In this

case, the ANOVA table would be

Source df SS MS F

Treatments 6 41.6 6.93 1.12

Error 28 174.0 6.21

Total 34 215.6

As you can see, the hypothesis for no treatment difference H0 : τ1 = τ2 = · · · = τ7 = 0

would not be rejected at any reasonable α level!!

MORAL: In the one-way classification experiment and analysis, there is no accounting for

the variation in the data that is attributable to systematic sources; e.g., position in field.
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The one-way analysis has no choice but to attribute this variation to experimental error;

that is, it regards this variation as just part of the inherent variation among experimental

units that we can not explain. The result is that SS[E] in the one-way analysis contains

both variation due to the position in field (a systematic source) and inherent variation.

NOTE : In the CRD analysis, note that SS[E] = 174.0, and that in the RBCD analysis,

SS[B]+SS[E] = 134.2+39.8 = 174.0; that is, SS[E] in the one-way analysis, which may be

regarded as ignoring the blocks, is equal to SS[B]+SS[E] in the RCBD analysis. Thus, the

use of blocking allows us to partition SS[E] in the one-way analysis into two orthogonal

components−one that is due to the systematic source of variation in the blocks, SS[B],

and one that is attributable to the unexplainable variation, SS[E] in the RBCD analysis.

In the CRD analysis, MS[E] is too large (so we couldn’t detect any differences in the

treatments). By blocking, and explicitly acknowledging that field position was a potential

source of variation, MS[E] was sufficiently reduced so that we could identify variety

differences.

MAIN POINTS : First, blocking can be an effective means of explaining variation (in-

creasing precision) so that differences among treatments (that truly exist) are more likely

to be detected. Second, the data from an experiment should be analysed in a way that

reflects how the randomisation (design) was carried out. Example 13.1 shows that if

we analyse the data according to an incorrect randomisation protocol, then erroneous

inferences may likely result. The design of the experiment always dictates the analysis!

13.3.2 No replication, subsampling

In the last section, we assumed that exactly one observation was taken on each of the t×r

experimental units in a RCBD. We now consider the extension of this to the case wherein

each of the t× r experimental units has more than one sampling unit (i.e., subsampling).

For simplicity, we will consider only the case of an equal number s of sampling units per

experimental unit. In this situation, we may identify an observation Yijk as being from

the kth subsampling unit from the jth block receiving the ith treatment. The linear
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Table 13.51: ANOVA table for the RCBD; one observation per treatment per block with

subsampling.

Source df SS MS F

Treatments t− 1 SS[T] MS[T] FT = MS[T]
MS[E]

Blocks r − 1 SS[B] MS[B] FB = MS[B]
MS[E]

Experimental Error (t− 1)(r − 1) SS[E] MS[E] FS = MS[E]
MS[S]

Sampling Error tr(s− 1) SS[S] MS[S]

Total N − 1 SS[TOT]

model for this situation is given by

Yijk = µ + τi + ρj + εij + δijk,

for i = 1, 2, ..., t, j = 1, 2, ..., r, and k = 1, 2, ..., s, where εij ∼ iid N (0, σ2
ε ), δijk ∼

iid N (0, σ2), and the εij and δijk are independent. As in the last section, either τi or ρj

(or both) may be best regarded as having fixed or random effects.

RECALL: In the last chapter, when we were considering the use of subsampling in the

one-way layout (without blocking), our breakdown of the total sum of squares was

SS[TOT] = SS[T] + SS[E] + SS[S].

In our situation now, with the use of blocking, we will take SS[E] from the one-way

analysis (with subsampling) and break it into two orthogonal components; namely, SS[B]

and a new SS[E] piece which is our experimental error after accounting for the blocking.

This orthogonalisation of SS[E] in the one-way analysis is precisely what we did in the

last section in the absence of subsampling.

ANOVA TABLE : Our goal is to write the ANOVA table for the two-way classification

model; i.e., Yijk = µ+τi +ρj + εij +δijk, for i = 1, 2, ..., t, j = 1, 2, ..., r, and k = 1, 2, ..., s,

which is our linear model for incorporating treatment and block effects with subsampling

(but with only one experimental unit per treatment per block). The ANOVA table will
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be the same regardless of whether the τi and/or ρj are treated as fixed or random. The

breakdown of SS[TOT] into its different sources of variation is based on the identity

t∑
i=1

r∑
j=1

s∑

k=1

(Yijk − Y +++)2

︸ ︷︷ ︸
SS[TOT]

= rs

t∑
i=1

(Y i++ − Y +++)2

︸ ︷︷ ︸
SS[T]

+ ts

r∑
j=1

(Y +j+ − Y +++)2

︸ ︷︷ ︸
SS[B]

+ s

t∑
i=1

r∑
j=1

(Y ij+ − Y +++)2

︸ ︷︷ ︸
SS[E]

+
t∑

i=1

r∑
j=1

s∑

k=1

(Yijk − Y ij+)2

︸ ︷︷ ︸
SS[S]

.

HAND COMPUTATION : For this situation, performing hand computation of the sums

of squares is easiest using the following formulae. First, compute the correction term

for fitting the overall mean

CM =
1

trs

(
t∑

i=1

r∑
j=1

s∑

k=1

Yijk

)2

= Y 2
+++/N,

where N = trs. The total sum of squares is given by

SS[TOT] =
t∑

i=1

r∑
j=1

s∑

k=1

Y 2
ijk − CM.

The treatment and block sums of squares are given by

SS[T] = rs

t∑
i=1

(Y i++ − Y +++)2 =
1

rs

t∑
i=1

Y 2
i++ − CM

SS[B] = ts

r∑
j=1

(Y +j+ − Y +++)2 =
1

ts

r∑
j=1

Y 2
+j+ − CM.

The experimental error sum of squares is computed as

SS[E] =
t∑

i=1

r∑
j=1

Y 2
ij+ − CM− SS[T]− SS[B].

The sampling error sum of squares is then computed by subtraction; i.e.,

SS[S] = SS[TOT]− SS[T]− SS[B]− SS[E].

TESTING FOR TREATMENT EFFECTS : The major test of interest is the one that

concerns the treatments. If the τi are best regarded as fixed, then we are interested in
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Table 13.52: EMS for the RCBD with one observation per treatment per block and sub-

sampling.

Expected mean squares (EMS)

Source of variation Both fixed Both random Mixed

Treatments σ2 + sσ2
ε +

rs
Pt

i=1 τ2
i

t−1
σ2 + sσ2

ε + rsσ2
τ σ2 + sσ2

ε +
rs
Pt

i=1 τ2
i

t−1

Blocks σ2 + sσ2
ε +

ts
Pr

j=1 ρ2
j

r−1
σ2 + sσ2

ε + tsσ2
ρ σ2 + sσ2

ε + tsσ2
ρ

Experimental Error σ2 + sσ2
ε σ2 + sσ2

ε σ2 + sσ2
ε

Sampling Error σ2 σ2 σ2

testing H0 : τ1 = τ2 = · · · = τt = 0 versus H1 : not H0. With random effects, we are

interested in testing H0 : σ2
τ = 0 versus H1 : σ2

τ > 0. In either case, we judge the amount

of evidence against H0 by comparing FT to a Ft−1,(t−1)(r−1) distribution. Large values of

FT are not consistent with H0.

TESTING FOR BLOCK EFFECTS : With fixed block effects, we would like to test H0 :

ρ1 = ρ2 = · · · = ρr = 0 versus H1 : not H0. With random block effects, we are interested

in the entire population of blocks, so we test H0 : σ2
ρ = 0 versus H1 : σ2

ρ > 0. In either

case, we judge the amount of evidence against H0 by comparing FB to a Fr−1,(t−1)(r−1)

distribution. Large values of FB are not consistent with H0. Recall that tests for block

effects are sometimes viewed as suspect (see last section).

TEST FOR VARIATION AMONG EXPERIMENTAL UNITS : Also available, as in

the one-way layout setting, is a test to diagnose variation among experimental units.

Specifically, we can test H0 : σ2
ε = 0 versus H1 : σ2

ε > 0 using the statistic FS. This is an

appropriate test regardless of whether the treatments (or blocks) are fixed or random,

since when H0 : σ2
ε = 0 is true, both MS[E] and MS[S] estimate the same quantity. Values

of FS larger than F(t−1)(r−1),tr(s−1),α are deemed significant at the α level.

EXPECTED MEAN SQUARES : The appropriateness of the tests that we just described

can be seen by looking at the expected mean squares in Table 13.52.
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Table 13.53: Seedlings height data from Example 13.2.

Fertilizer 1 Fertilizer 2 Fertilizer 3

Greenhouse I II I II I II

Seedling 1 47 46 62 67 41 42

Seedling 2 43 40 68 71 39 46

Example 13.2 (seedlings.sas). The operators of a nursery with r = 2 greenhouses

would like to investigate differences among t = 3 fertilizers they might use on plants

they are growing for commercial sale. To set up the experiment, they randomly select

12 similar seedlings and randomly allocate them to 6 trays (experimental units), s = 2

per tray. The trays are then randomly allocated to be placed in the two greenhouses,

three trays per greenhouse. Within each greenhouse, the three fertilizers are assigned

to the trays at random (restricted randomisation) so that each tray receives a different

fertilizer. At the end of six weeks, the heights of each seedlings, Y (measured in mm),

are collected. The data from the experiment are in Table 13.53. To summarise, we have

N = 12 observations total with

Treatments Fertilizers t = 3

Blocks Greenhouses r = 2

Experimental Units Trays tr = 6

Sampling Units Seedlings s = 2

In this problem, we will regard both treatments (fertilizers) and blocks (greenhouses) as

fixed effects.

CALCULATIONS : We have Y1++ = 176, Y2++ = 268, and Y3++ = 168 (these are

the treatment totals), Y+1+ = 300 and Y+2+ = 312 (these are the block totals), and

Y+++ = 612 (grand total). The correction term for fitting the overall mean

CM =
1

trs

(
t∑

i=1

r∑
j=1

s∑

k=1

Yijk

)2

= (612)2/12 = 31212.
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The total sum of squares is given by

SS[TOT] =
t∑

i=1

r∑
j=1

s∑

k=1

Y 2
ijk − CM = (472 + 432 + · · ·+ 462)− 31212 = 1642.

The treatment and block sums of squares are given by

SS[T] =
1

rs

t∑
i=1

Y 2
i++ − CM =

1

4
(1762 + 2682 + 1682)− 31212 = 1544

SS[B] =
1

ts

r∑
j=1

Y 2
+j+ − CM =

1

6
(3002 + 3122)− 31212 = 12.

The experimental error sum of squares is computed as

SS[E] =
t∑

i=1

r∑
j=1

Y 2
ij+ − CM− SS[T]− SS[B]

= (902 + 862 + · · ·+ 882)− 31212− 1544− 12 = 24.

The sampling error sum of squares is then computed by subtraction; i.e.,

SS[S] = 1642− 1544− 12− 24 = 62.

Putting all of these calculations together, we can write the ANOVA table for these data;

this is given below.

Source df SS MS F

Fertilizers (Treatments) 2 1544.00 772.00 FT = 64.33

Greenhouses (Blocks) 1 12.00 12.00 FB = 1.00

Experimental Error 2 24.00 12.00 FS = 1.16

Sampling Error 6 62.00 10.33

Total 11 1642.00

ANALYSIS : To test for differences among fertilizers, we compare FT = 64.33 to F2,2,0.05 =

19.00. Since FT is large, we have evidence to conclude that the mean heights are different

for different fertilizers. Note that the statistics FB and FS are both small. Thus, there

doesn’t look to be a greenhouse effect (was blocking really needed?) and there doesn’t

look to be a significant amount of variability among the trays (experimental units).
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Figure 13.36: Seedlings height data for three fertilizers.

PAIRWISE INTERVALS : Since there are significant differences among fertilizers, let’s

see where they are; we’ll do this by writing simultaneous pairwise intervals for τ2 − τ1,

τ3 − τ1, and τ3 − τ2. To construct the confidence interval for τ2 − τ1, we can use the

point estimator Y 2++ − Y 1++, the difference in the sample means. Under our model

assumptions, straightforward calculations show that (verify!)

E(Y 2++ − Y 1++) = τ2 − τ1

and

V (Y 2++ − Y 1++) =
2(σ2 + 2σ2

ε )

4
.

However, note that MS[E] estimates σ2 + 2σ2
ε (see Table 13.52). Since Y 2++ − Y 1++ is a

linear combination of the normally distributed Yijk’s, then Y 2++−Y 1++, too, is normally

distributed. A 95 percent confidence interval for τ2 − τ1 is, thus, given by

(Y 2++ − Y 1++)± t2,0.025 ×
√

2MS[E]

4
.

The other confidence intervals are formed similarly. To adjust for multiplicity, we can
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use a Tukey correction. The simultaneous intervals then take the form

(Y 2++ − Y 1++)± q3,2,0.05 ×
√

MS[E]

4

(Y 3++ − Y 1++)± q3,2,0.05 ×
√

MS[E]

4

(Y 3++ − Y 2++)± q3,2,0.05 ×
√

MS[E]

4

(the
√

2 term is absorbed in q3,3,0.05). These are simultaneous 95 percent confidence

intervals for the differences. For these data, y1++ = 44, y2++ = 67, y3++ = 42, and

MS[E] = 12.00. Unfortunately, I couldn’t locate q3,2,0.05 anywhere, so I’ll refer you to the

Tukey intervals on the accompanying SAS program. Based on these intervals, it looks

as though fertilizer 2 produces a significantly higher mean height than fertilizers 1 and 3

and that these latter two fertilizers are not significantly different from each other.

NOTE : For those of you that are interested (see me if you want a reference), the value

of q ≡ q3,2,0.05 solves

∫ ∞

0

∫ ∞

−∞

[
Φ(z)− Φ(z −

√
2qs)

]2

fZ(z)fS(s)dz ds = 0.95/3,

where Φ(z) is the standard normal cdf, fZ(z) is the standard normal pdf, and fS(s)

is the pdf of S ≡
√

MS[E]/σ. Programs are available that solve this double integral

numerically.

13.3.3 Replication, no subsampling

So far, we have been concerned with the situation where each treatment is seen only

once within each block. There is an intuitively apparent drawback to this type of design;

namely, because we only see each treatment once in each block, we do not have sufficient

information to understand the interaction between the treatments and the blocks.

Example 13.3. A farmer would like to determine the effect of yield of three cultivars,

one of which is known to be drought-resistant. The farmer is interested in how the
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cultivars differ in the area of his farm where he might plant them. Thus, he divides this

area into three blocks, in order to conduct the experiment, basing the blocks on what

he best knows about the wetness in various parts of this area. One of the blocks is on

a hillside and is quite dry. The farmer expects that the drought-resistant cultivar might

give higher yields in this area. However, if the farmer conducted the experiment so that

each block was divided into 3 plots, each fertilizer then randomised to a plot, he would

only have one experimental unit (plot) per treatment/block combination. From this

information, he would not be able to assess the interaction between cultivars and blocks.

Thus, he would not be able to determine whether a high yield for the drought-resistant

cultivar in the dry block really was a results of this suspected systematic effect, or just a

chance result for the particular plot.

MAIN POINT : If we only have one experimental unit per treatment/block combination,

we can not understand how the treatments and blocks interact. To measure this inter-

action, we must have more than one experimental unit per treatment/block combination;

that is, we must have replicates of the experimental units.

LINEAR MODEL: We now formally write a linear model for this situation (assuming no

subsampling). Here, we may identify an observation as being on the kth experimental

unit in the jth block receiving the ith treatment. The model is given by

Yijk = µ + τi + ρj + (τρ)ij + εijk,

for i = 1, 2, ..., t, j = 1, 2, ..., r, and k = 1, 2, ..., nij, where εijk ∼ iid N (0, σ2). Here,

nij denotes the number of experimental units for the ith treatment and jth block. For

simplicity, we’ll assume that nij = n (a balanced design) for all i and j. As in the last

section, either τi or ρj (or both) may be regarded as having fixed or random effects (more

on this momentarily). The total number of observations (assuming balance) is N = trn.

INTERPRETATION : Compare this model to the model for the subsampling model given

in the last section. In this model, the components, (τρ)ij and εijk replace εij and δijk

in the subsampling model, respectively (and I use n for the number of experimental

unit replicates instead of s for the number of sampling units). Other than this change
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Table 13.54: ANOVA table for the RCBD; more than one experimental unit, with no

subsampling.

Source df SS MS F

Treatments t− 1 SS[T] MS[T] FT

Blocks r − 1 SS[B] MS[B] FB

Interaction (t− 1)(r − 1) SS[I] MS[I] FI

Experimental Error tr(n− 1) SS[E] MS[E]

Total N − 1 SS[TOT]

in symbols, the models look similar. However, the interpretation is quite different!! It

is important that you feel comfortable with the fact that, although the models have a

similar form, they represent experiments that are very different.

PUNCHLINE : Algebraically, it turns out that the same computations apply in construct-

ing the ANOVA in this setting as did in the subsampling model from the last section.

The ANOVA table will be the same regardless of whether the τi and/or ρj are treated

as fixed or random. The breakdown of SS[TOT] into its different sources of variation is

based on the identity

t∑
i=1

r∑
j=1

n∑

k=1

(Yijk − Y +++)2

︸ ︷︷ ︸
SS[TOT]

= rn

t∑
i=1

(Y i++ − Y +++)2

︸ ︷︷ ︸
SS[T]

+ tn

r∑
j=1

(Y +j+ − Y +++)2

︸ ︷︷ ︸
SS[B]

+ n

t∑
i=1

r∑
j=1

(Y ij+ − Y +++)2

︸ ︷︷ ︸
SS[I]

+
t∑

i=1

r∑
j=1

n∑

k=1

(Yijk − Y ij+)2

︸ ︷︷ ︸
SS[E]

.

HAND COMPUTATION : For this situation, performing hand computation of the sums

of squares is easiest using the following formulae. First, compute the correction term

for fitting the overall mean

CM =
1

trn

(
t∑

i=1

r∑
j=1

n∑

k=1

Yijk

)2

= Y 2
+++/N,
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where N = trn. The total sum of squares is given by

SS[TOT] =
t∑

i=1

r∑
j=1

n∑

k=1

Y 2
ijk − CM.

The treatment and block sums of squares are given by

SS[T] = rn

t∑
i=1

(Y i++ − Y +++)2 =
1

rn

t∑
i=1

Y 2
i++ − CM

SS[B] = tn

r∑
j=1

(Y +j+ − Y +++)2 =
1

tn

r∑
j=1

Y 2
+j+ − CM.

The treatment/block interaction error sum of squares is computed as

SS[I] =
t∑

i=1

r∑
j=1

Y 2
ij+ − CM− SS[T]− SS[B].

The experimental error sum of squares is then computed by subtraction; i.e.,

SS[E] = SS[TOT]− SS[T]− SS[B]− SS[I].

FIXED VERSUS RANDOM EFFECTS : Consider our linear model for analysing bal-

anced data in a RCBD with experimental unit replication; i.e.,

Yijk = µ + τi + ρj + (τρ)ij + εijk,

for i = 1, 2, ..., t, j = 1, 2, ..., r, and k = 1, 2, ..., n, where εijk ∼ iid N (0, σ2). As usual,

tests of hypotheses are conducted by using F statistics; however, with this model, we

have to be very careful about our interpretations of the treatment and block effects. In

particular, the forms of the tests depend greatly on whether or not these factors are best

regarded as fixed or random. You’ll note that I didn’t give the formulae for the F tests

in Table 13.54 just yet (for good reason). Let’s look at the different possible scenarios.

• Fixed treatments, fixed blocks. If the τi and ρj are best regarded as fixed

effects, the systematic interaction effect (τρ)ij is also regarded as fixed. To compute

expected mean squares in this situation, the standard side conditions τ+ = ρ+ =

(τρ)i+ = (τρ)+j = 0 are assumed. In this situation, there are no additional model

assumptions needed.
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• Random treatments, random blocks. If the τi and ρj are best regarded as

random effects, the systematic interaction effect (τρ)ij is also regarded as random.

In this situation, it is common to assume that τi ∼ iid N (0, σ2
τ ), ρj ∼ iid N (0, σ2

ρ),

(τρ)ij ∼ iid N (0, σ2
τρ), and that τi, ρj, (τρ)ij, and εijk are independent random

variables.

• Fixed treatments, random blocks. If the τi are fixed effects and the ρj are

random, how should we think of the interaction term (τρ)ij? When blocks are

random, we may think of each block in the population of all possible blocks as

having a (τρ)ij value associated with it; i.e., if treatment i were applied to a block

chosen from this population, the associated deviation would be this value. From

this perspective, it seems sensible to think of the (τρ)ij as being random as well.

One can envision a population of (τρ)ij values for each treatment i containing all

the possible deviations that arise for each possible block. If we think of the (τρ)ij

in this way, then, analogous to our last situation, we would assume that ρj ∼
iid N (0, σ2

ρ), (τρ)ij ∼ iid N (0, σ2
τρ), and that ρj, (τρ)ij, and εijk are independent

random variables. To compute expected mean squares in this situation, we will

assume the restriction (τρ)+j = 0; that is, summing the interaction component

over the fixed treatment factor equals zero. This restriction implies that certain

interaction elements at different levels of the fixed factor are not independent.

This version of the mixed model is often called the restricted model, because we

are imposing the “sum to zero” restriction previously mentioned. There are some

authors that do not advocate the use of this restriction! If this restriction is not

assumed, the mixed model is often called the unrestricted mixed model.

THE MIXED MODEL CONTROVERSY : In light of this multiplicity of mixed models

(one that incorporates the restriction and one that does not), which one should we use?

I have found that more statisticians prefer the restricted model, and it is the most widely

encountered in the literature. The restricted model is actually slightly more general than

the unrestricted model, because in the restricted model, the covariance between two

observations from the same level of the random factor can be either positive or negative,
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Table 13.55: EMS for the RCBD with replication and no subsampling.

Expected mean squares (EMS)

Source of variation Both fixed Both random (Restricted) Mixed

Treatments σ2 +
rn
Pt

i=1 τ2
i

t−1
σ2 + nσ2

τρ + rnσ2
τ σ2 + nσ2

τρ +
rn
Pt

i=1 τ2
i

t−1

Blocks σ2 +
tn
Pr

j=1 ρ2
j

r−1
σ2 + nσ2

τρ + tnσ2
ρ σ2 + tnσ2

ρ

Interaction σ2 +
n
Pt

i=1

Pr
j=1(τρ)2ij

(t−1)(r−1)
σ2 + nσ2

τρ σ2 + nσ2
τρ

Experimental Error σ2 σ2 σ2

while this covariance can only be positive in the unrestricted model. Voss (1999) discusses

the controversy over these two models. At this point, I would like for you to be aware

of what the controversy is all about; not necessarily the mathematics that underlies the

controversy. The main point is that the form of tests for random effects can change,

depending on which mixed model interpretation you adopt!

HYPOTHESIS TESTS : If the fixed or random effects models, there is no controversy.

From Table 13.55, we see that in the fixed case,

FT =
MS[T]

MS[E]
tests H0 : τ1 = τ2 = · · · = τt = 0

FB =
MS[B]

MS[E]
tests H0 : ρ1 = ρ2 = · · · = ρr = 0

FI =
MS[I]

MS[E]
tests H0 : (τρ)ij = 0, for all i and j.

Likewise, in the random case, we see that

FT =
MS[T]

MS[I]
tests H0 : σ2

τ = 0

FB =
MS[B]

MS[I]
tests H0 : σ2

ρ = 0

FI =
MS[I]

MS[E]
tests H0 : σ2

τρ = 0.

When we are in a mixed-model situation, there are some ambiguities that surface. In the

restricted mixed model case; i.e., the model where we assume (τρ)+j = 0 for all j, we
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see that

FT =
MS[T]

MS[I]
tests H0 : τ1 = τ2 = · · · = τt = 0

FB =
MS[B]

MS[E]
tests H0 : σ2

ρ = 0

FI =
MS[I]

MS[E]
tests H0 : σ2

τρ = 0.

The appropriateness of these tests can be seen from Table 13.55. However, in the un-

restricted mixed model case, it follows that E(MS[B]) = σ2 + tnσ2
ρ + nσ2

τρ (all other

expected mean squares remain unchanged); this fact suggests that

FB =
MS[B]

MS[I]
tests H0 : σ2

ρ = 0.

Hence, the controversy! Tests for block effects are different depending on whether the

restricted or unrestricted model is assumed!

Example 13.4 (calcium.sas). The following experiment was set up to determine the

effect of a certain hormone treatment on the plasma calcium level, Y , (measured in

mg/100 ml) for a certain type of bird. It was thought that the gender of the birds might

play a role. Random samples of 10 male birds and 10 female birds were obtained. For

each gender, 5 birds were randomly assigned to receive the hormone treatment, and the

remaining 5 did not. Thus, we may view this as a RCBD where the blocks are the genders

(r = 2), which are obviously fixed. Within each block, experimental units (i.e., the birds)

were randomised to receive the treatments (hormone/no hormone; t = 2). There are

n = 5 replicates for each treatment/block combination. A single plasma calcium level

was recorded for each bird. The treatments are obviously fixed as well; thus, for this

situation, we might consider the fixed effects model

Yijk = µ + τi + ρj + (τρ)ij + εijk,

for i = 1, 2, j = 1, 2, and k = 1, 2, ..., 5, where εijk ∼ iid N (0, σ2). It was suspected

that the difference between having the hormone treatment or not might be different

depending on whether the bird was male or female; that is, a hormone-gender interaction

was suspected. The data from the experiment are in Table 13.56.
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Table 13.56: Calcium level data.

Males Females

Hormone No hormone Hormone No hormone

32.0 14.5 39.1 16.5

23.8 11.0 26.2 18.4

28.8 10.8 21.3 12.7

25.0 14.3 35.8 14.0

29.3 10.0 40.2 12.8

ANALYSIS : From SAS, I have computed the ANOVA table (hand computations would

mirror those from the last subsection, so I have omitted them).

Source df SS MS F

Hormone (Treatments) 1 1386.11 1386.11 60.53

Gender (Blocks) 1 70.31 70.31 3.07

Interaction 1 4.90 4.90 0.21

Experimental Error 16 366.37 22.90

Total 19 1827.69

Since the τi and ρj are both best regarded as fixed effects, there is no controversy in the

formulation of tests. All three tests (for a treatment effect, block effect, and interaction

effect) use F1,16,0.05 = 4.49 as a critical value. Clearly, there is a significant difference

between the hormone/no hormone treatment. There doesn’t seem to be a large difference

between the genders (was blocking really useful?), nor does there appear to be a hormone-

gender interaction. From Figure 13.37, it is easy to see that the hormone application

significantly increases the mean calcium level (in light of our significant F test for

hormone application). To assess whether or not this difference is practical, we can write

a confidence interval for τ2− τ1, the difference in means for the levels of hormone. In the

fixed effects model Yijk = µ+τi+ρj +(τρ)ij +εijk, for i = 1, 2, j = 1, 2, and k = 1, 2, ..., 5,
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Figure 13.37: Calcium levels for different levels of hormone application.

where εijk ∼ iid N (0, σ2), it is easy to show that (verify!)

E(Y 2++ − Y 1++) = τ2 − τ1

and

V (Y 2++ − Y 1++) =
2σ2

10
.

A 95 percent confidence interval for τ2 − τ1 becomes

(Y 2++ − Y 1++)± t16,0.025 ×
√

2MS[E]

10
.

Here, I’ll refer to level 2 as hormone application and level 1 as no hormone application.

With these data, y1++ = 13.50, y2++ = 30.15, t16,0.025 = 2.1199, and MS[E] = 22.90.

A 95 percent confidence interval for τ2 − τ1 is (12.11, 21.19). Again, note the additional

information that the confidence interval confers that the F test does not. We have a

statistically significant result here (i.e., F test rejects; CI doesn’t include 0). However,

if the experimenter was hoping for a 25 mg mean increase in calcium levels, say, from the

application of the hormone, this would not be a practically significant result.
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