5.2 Sampling Distribution of a Sample Mean

This section examines properties of the sample mean 
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. If we select an SRS of size n from a large population with mean 
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 and standard deviation 
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, the sample mean 
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 has a sampling distribution with 
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Example 5.14 The height X of a single randomly chosen young woman varies according to the N(64.5, 2.5) distribution. If a medical study asked the height of an SRS of 100 young women, the sampling distribution of the sample mean height 
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would have mean and standard deviation
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The height of individual women vary widely about the population mean(
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 inches), but the average height of a sample of 100 women has a standard deviation only one-tenth as large (
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Sampling Distribution of a Sample Mean 

If a population has the N(
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) distribution, 
then the sample mean 
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 of n independent observations has the N(
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) distribution. 
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Figure 5.8 The sampling distribution of 
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 for samples of size 10 compared with the distribution of a single observation. See Example 5.16.

The Central Limit Theorem  

A big result in statistics called the central limit theorem tells us that repeated sampling of samples of size n from a population with mean
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 and standard deviation 
[image: image24.wmf]s

 will produce a collection of 
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’s that will have a normal shape, center 
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 and standard deviation
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 if n, the sample size is large enough. 
Central Limit Theorem 

Draw an SRS of size n from any population with mean 
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 and finite standard deviation 
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. When n is large, the sampling distribution of the sampling mean 
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 is approximately normal: 
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 is approximately N(
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Example. Suppose the heights of adult people in a large community almost have a normal distribution with mean 68 inches and standard deviation of 12 inches. If 10 adults are sampled from this population what is the probability that the average height will be between 60 and 70 inches? 
First notice that the central limit theorem holds here because if the original height distribution was almost normal then the distribution of the sample averages will certainly be normal for samples of size n=10. This means we want to find 
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, but because x-bar has a normal distribution we can form another z-score defined as: 
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so our probability problem becomes, 
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, or about a 68 to 69 percent chance.
Notice that because the typical variation in 
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is 
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, the sample average typically gets very close to the truth, 
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 if the sample size n is large. 
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Figure 5.10 The central limit theorem in action: the distribution of a sample means from a strongly nonnormal population becomes more normal as the sample size increases. (a) The distribution of 1 observation. (b) the distribution of 
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 for 2 observations. (c) the distribution of 
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 for 10 observations. (d) the distribution of 
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 for 25 observations.
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Figure 5.11 The exact distribution (dashed) and the normal approxiamtion from the central limit theorem (solid) for the average time needed to maintain an air conditioner, for Example 5.19.
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