
The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Computational Soundness of a Call by Name
Calculus of Recursively-scoped Records

Elena Machkasova

University of Minnesota, Morris

WRS 2007

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Outline

1 The calculus
Overview of records
Definition of the calculus

2 Calculus properties
Confluence of evaluation
Computational soundness

3 Elements of the computational soundness proof

4 Conclusions and future work

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Overview of the calculus

Untyped CBN calculus
Records are unordered collections of labeled terms
Records represent mutual dependencies, including cyclic
dependencies
Cyclic dependencies arise in separate compilation,
modules and linking, letrec.

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Overview of records
Definition of the calculus

Overview of records

Example of a record:
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1]

3 components, with labels l1, l2, l3
labels are bound to λ-terms
components reference each other via labels

Evaluation ⇒ of a record (leftmost, outermost strategy):

[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1] ⇒
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ (λx .x) @ l1] ⇒
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l1] ⇒
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ 2 + 3] ⇒
[l1 7→ 5, l2 7→ λx .x , l3 7→ 2 + 3] ⇒ . . .

At most one evaluation step is possible in each component.

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Overview of records
Definition of the calculus

Overview of records (cont.)

A rewriting relation →:

[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1] →
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ (2 + 3)] →
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ 5] →
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ (λx .x) @ 5] →

Computational soundness: rewriting steps preserve the
meaning of a term, as defined by ⇒.

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Overview of records
Definition of the calculus

Term-level calculus

Terms and term contexts:

M ::= c | x | l | • | λx .M | M1 @ M2 | M1 + M2
C ::= � | λx .C | C @ M | M @ C | C + M | M + C
E ::= � | E @ M | E + M | c + E

c - constants, x , y , z - variables, l - labels, • - black hole.
C - general context (the hole may be anywhere in a term), E -
evaluation context.
C{M} is the result of C with M.
Terms: λx .2 + 3, (λx .x) @ •, l1 + 2
Evaluation contexts: �, �+ l1, � @ λx .x
Non-evaluation general contexts: λx .�, (λx .x) @ �

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Overview of records
Definition of the calculus

Relations on terms

 - the elementary reduction, ⇒ - evaluation, → - rewriting
relation (reduction).

(λx .M) @ N M[x := N] (β)
c1 + c2 c3 (the result of the operation +) (op)
C{R} → C{Q} where R Q
E{R} ⇒ E{Q} where R Q

Non-evaluation: ↪→ = → \ ⇒
Examples:

(λx .x) @ (2 + 3) ⇒ 2 + 3
(λx .x) @ (2 + 3) ↪→ (λx .x) @ 5

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Overview of records
Definition of the calculus

Record calculus

Records:

D ::= [l1 7→ M1, ..., ln 7→ Mn], li 6= lj for i 6= j
D ::= [l 7→ C, l1 7→ M1, . . . , ln 7→ Mn] record context
G ::= [l 7→ E, l1 7→ M1, . . . , ln 7→ Mn] record eval. context,

C is a term context, E is a term evaluation context.

Records: [l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1],
[l1 7→ •, l2 7→ λx .l1]

Evaluation context: [l1 7→ �+ 2, l2 7→ λx .x , l3 7→ l2 @ l1]

Non-evaluation context: [l1 7→ 2 + 3, l2 7→ λx .�, l3 7→ l2 @ l1]

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Overview of records
Definition of the calculus

Relations on records: term reduction

Term reduction: reducing a component in a record.

D{R} → D{Q}, R Q (T)
G{R} ⇒ G{Q}, R Q (TE)

Examples:

[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1] ⇒
[l1 7→ 5, l2 7→ λx .x , l3 7→ l2 @ l1]
[l1 7→ λx .2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1] ↪→
l1 7→ λx .5, l2 7→ λx .x , l3 7→ l2 @ l1]

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Overview of records
Definition of the calculus

Relations on records: substitution

Substitution:

D{l} → D{M}, l 7→ M ∈ D{l}, D 6= [l 7→ E, . . .] (S)
G{l} ⇒ G{M}, l 7→ M ∈ G{l}, G 6= [l 7→ E, . . .] (SE)

Examples:

[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1] ⇒
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ (λx .x) @ l1]
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1] ↪→
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ (2 + 3)]

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Overview of records
Definition of the calculus

Relations on records: black hole

Black hole • denotes apparent infinite substitution cycles.
Black hole reductions:

[l1 7→ E{l1}, ...] ⇒ [l1 7→ •, ...] (B1)
[l1 7→ E{•}, ...] ⇒ [l1 7→ •, ...] (B2)

(B1) – introduction of •:

[l1 7→ l1 + 1] ⇒ [l1 7→ •]

(instead of [l1 7→ l1 + 1] ⇒ [l1 7→ l1 + 1 + 1] ⇒ . . .)
(B2) – propagation of •:

[l1 7→ •, l2 7→ l1 + 1] ⇒ [l1 7→ •, l2 7→ •+ 1] ⇒ [l1 7→ •, l2 7→ •]

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Confluence of evaluation
Computational soundness

Confluence of evaluation

Lemma (Confluence of Evaluation)
⇒ is confluent on records.

A potential non-confluence example (similar to one in Ariola,
Klop 1996):

[l1 7→ 2 + l2, l2 7→ l1 + 1] ⇒ [l1 7→ 2 + l1 + 1, l2 7→ l1 + 1]
[l1 7→ 2 + l2, l2 7→ l1 + 1] ⇒ [l1 7→ 2 + l2, l2 7→ 2 + l2 + 1]

Without a black hole both components in one record reference
l1, both components in the second record reference l2.
With a black hole both records evaluate to [l1 7→ •, l2 7→ •]:

[l1 7→ 2 + l1 + 1, l2 7→ l1 + 1] ⇒ [l1 7→ •, l2 7→ l1 + 1] ⇒
[l1 7→ •, l2 7→ •+ 1] ⇒ [l1 7→ •, l2 7→ •]

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Confluence of evaluation
Computational soundness

Uniform normalization of ⇒

Lemma
Given a record D, if there exists D′ s.t.

D =⇒∗ D′

D′ is a normal form w.r.t. ⇒,
no component in D′ is bound to •,

then there is no infinite sequence D ⇒ D1 ⇒ D2

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Confluence of evaluation
Computational soundness

Classification of terms

Terms are grouped into classes denoted by symbols, possibly
with parameters. Terms in the same class have the same
“meaning”. Cl(M) denotes the class of M:

Cl(E{R}) = eval if R is a redex. Such terms are called
evaluatable.
Cl(c) = const(c), where const(c1) = const(c2) if and
only if c1 = c2. i.e. const(2) 6= const(3)

Cl(•) = •
Cl(λx .N) = abs
Cl(E{l}) = stuck(l), where stuck(l1) = stuck(l2) if and
only if l1 = l2
Cl(M) = error otherwise

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Confluence of evaluation
Computational soundness

Classification of records

A class of a record is determined by classes of its components:
Cl([l1 7→ M1, . . . ln 7→ Mn]) = [l1 7→ Cl(M1), . . . ln 7→ Cl(Mn)]
if Cl(Mi) 6= • for all i s.t. 1 ≤ i ≤ n
Cl([l 7→ •, . . .]) = ⊥

Example:

Cl([l1 7→ λx .x , l2 7→ l1 @ 1]) = [l1 7→ abs, l2 7→ stuck(l1)]

A black hole in an evaluation context represents infinite
divergence:

Cl([l1 7→ •, l2 7→ 2 + 3]) = ⊥

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Confluence of evaluation
Computational soundness

Outcome and computational soundness

The outcome of a record D, denoted Outcome(D), is:
Cl(D′) where D′ is the normal form of D w.r.t. ⇒ if D has a
normal form
⊥ if evaluation of D diverges.

A relation R is meaning preserving if MRN implies that
Outcome(M) = Outcome(N).
A calculus is computationally sound if the reflexive, symmetric,
transitive closure of → is meaning preserving.

Theorem
Calculus of records is computationally sound.

⇒ is meaning-preserving by confluence and uniform
normalization. Need to prove that ↪→ is meaning-preserving.

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Confluence of evaluation
Computational soundness

Black hole and computational soundness

Some challenges in proving computational soundness:

[l1 7→ l2 @ 2, l2 7→ λx .l1] ↪→ [l1 7→ l2 @ 2, l2 7→ λx .l2 @ 2]

The first record evaluates to a n.f. with a black hole:

[l1 7→ l2 @ 2, l2 7→ λx .l1] ⇒
[l1 7→ (λx .l1) @ 2, l2 7→ λx .l1] ⇒
[l1 7→ l1, l2 7→ λx .l1] ⇒ . . .
[l1 7→ •, l2 7→ λx .•]

The second one diverges:

[l1 7→ l2 @ 2, l2 7→ λx .l2 @ 2] ⇒
[l1 7→ (λx .l2 @ 2) @ 2, l2 7→ λx .l2 @ 2] ⇒
[l1 7→ l2 @ 2, l2 7→ λx .l2 @ 2] ⇒ . . .

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Meaning preservation of term reduction

Meaning preservation of a term reduction is proven using the
lift/project approach (introduced in Machkasova&Turbak, 2000).
Lift and project diagrams:

D1
∗+3___ ___

_�

T
��

D4_�

∗��
�
�
� D1

∗+3
_�

T
��

D2
∗+3___ ___ D4_�

∗��
�
�
�

D2
∗+3 D3 D3

∗+3_______ _______ D5

Class preservation: if D1 ↪→ D2 then Cl(D1) = Cl(D2).
If D3 in lift is a normal form w.r.t. ⇒, we obtain equivalence of
outcomes of D1 and D2. Similarly assuming that D2 in project is
a normal form.

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Efficient evaluation strategy

Efficient evaluation strategy: a partial order on evaluation of
record components; similar to call-by-need.
Let D = [l 7→ M, . . .]. The efficient strategy to evaluate l is
defined as:

If M = E{R}, evaluate R.
If M = E{l ′} and l ′ is evaluated to M ′, substitute M ′ for l ′.
If M = E{l ′} and M ′ is not a normal form, start evaluating
M ′ using the efficient strategy.
If M depends on • or on l directly or transitively, then the
efficient strategy stops and reports a cycle.
If M is a substitution-free normal form, the efficient strategy
for l in D is undefined.

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Efficient evaluation strategy: example

A sequence that follows the efficient strategy; l1 is the target
label:

[l1 7→ l2, l2 7→ l3 + 2, l3 7→ 1 + 3] ⇒
[l1 7→ l2, l2 7→ l3 + 2, l3 7→ 4] ⇒
[l1 7→ l2, l2 7→ 4 + 2, l3 7→ 4] ⇒
[l1 7→ l2, l2 7→ 6, l3 7→ 4] ⇒
[l1 7→ 6, l2 7→ 6, l3 7→ 4]

A valid evaluation, but not efficient strategy (duplicated a redex):

[l1 7→ l2, l2 7→ l3 + 2, l3 7→ 1 + 3] ⇒
[l1 7→ l3 + 2, l2 7→ l3 + 2, l3 7→ 1 + 3] ⇒ . . .

Any evaluation normal form can be reached by an efficient
strategy.

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

(M1, M2)-similarity

Multihole contexts:

M ::= � | M | λx .M | M + M | M @ M

A record D1 is called (M1, M2)-similar to a record D2 (denoted
D1 ∼M1

M2
D2) if there exist multi-hole contexts M1, . . . , Mn s.t.

D1 = [l1 7→ M1{M1, . . . , M1}, . . . , ln 7→ Mn{M1, . . . , M1}],
D2 = [l1 7→ M1{M2, . . . , M2}, . . . , ln 7→ Mn{M2, . . . , M2}].

This means that some occurrences of M1 in D1 are replaced by
M2 in D2.

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Meaning preservation of substitution

Suppose D1 ↪→ D2 by a substiting a term M bound to l into a
component labeled l ′. Then D1 ∼l

M D2 (base case).
Use efficient evaluation strategy starting with labels l , l ′

(induction on the number of ⇒ steps).
We prove that D1 reaches a black-hole-free normal form if and
only if D2 does, and the resulting records remain (l , M)-similar:

D1_�

��

∗+3 D′
1

∼l
M�O

�O
�O

D1_�

��

∗+3_______ _______ D′
1

∼l
M�O

�O
�O

D2
∗+3___ ___ D′

2 D2
∗+3 D′

2
∗+3___ ___ D′′

2

If both records evaluate to normal forms then the differences
are only in non-evaluation contexts, don’t effect the class of n.f.
(i.e the outcome).

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Conclusions

We have proven that a CBN system of mutually recursive
components is computationally sound.
Diagram-based approaches are problematic for such
systems.
The context-based method allows us to prove
computational soundness.

Future work:
Study applicability of the context method to other systems
with cyclic dependencies: letrec calculi; modules and
linking
Continue comparison with other methods of proving
computational soundness.

The calculus
Calculus properties

Elements of the computational soundness proof
Conclusions and future work

Selected bibliography
More detailed presentation, see http://cda.morris.umn.edu/eelenam/

E. Machkasova: Computational Soundness of a Call by Name Calculus
of Recursively-scoped Records. Working Papers Series, University of
Minnesota, Morris, Vol. 2 Num. 3, 2007.
E. Machkasova, E. Christiansen: Call-by-name Calculus of Records
and its Basic Properties. Working Papers Series, University of
Minnesota, Morris, Vol. 2 Num. 2, 2006

Related work:
G. D. Plotkin: Call-by-name, call-by-value and the lambda calculus.
Theoret. Comput. Sci., 1975.
E. Machkasova, F. Turbak: A calculus for link-time compilation. ESOP
2000
J. B. Wells, Detlef Plump, and Fairouz Kamareddine: Diagrams for
meaning preservation. RTA 2003
M. Schmidt-Schauß: Correctness of copy in calculi with letrec. RTA
2007.

	The calculus
	Overview of records
	Definition of the calculus

	Calculus properties
	Confluence of evaluation
	Computational soundness

	Elements of the computational soundness proof
	Conclusions and future work

