Computational Soundness of a Call by Name Calculus of Recursively-scoped Records

Elena Machkasova

University of Minnesota, Morris

WRS 2007

Outline

- Overview of records
- Definition of the calculus
- 2 Calculus properties
 - Confluence of evaluation
 - Computational soundness
- Elements of the computational soundness proof
- 4 Conclusions and future work

Overview of the calculus

- Untyped CBN calculus
- Records are unordered collections of labeled terms
- Records represent mutual dependencies, including cyclic dependencies

ヘロト ヘアト ヘヨト ヘ

• Cyclic dependencies arise in separate compilation, modules and linking, letrec.

Overview of records Definition of the calculus

Overview of records

Example of a record:

$$[I_1 \mapsto \mathbf{2} + \mathbf{3}, I_2 \mapsto \lambda x.x, I_3 \mapsto I_2 @ I_1]$$

- 3 components, with labels I_1, I_2, I_3
- labels are bound to λ-terms
- components reference each other via labels

Evaluation \Rightarrow of a record (leftmost, outermost strategy):

$$\begin{bmatrix} l_1 \mapsto 2+3, \ l_2 \mapsto \lambda x.x, \ l_3 \mapsto l_2 @ l_1 \end{bmatrix} \Rightarrow \\ \begin{bmatrix} l_1 \mapsto 2+3, \ l_2 \mapsto \lambda x.x, \ l_3 \mapsto (\lambda x.x) @ l_1 \end{bmatrix} \Rightarrow \\ \begin{bmatrix} l_1 \mapsto 2+3, \ l_2 \mapsto \lambda x.x, \ l_3 \mapsto l_1 \end{bmatrix} \Rightarrow \\ \begin{bmatrix} l_1 \mapsto 2+3, \ l_2 \mapsto \lambda x.x, \ l_3 \mapsto 2+3 \end{bmatrix} \Rightarrow \\ \begin{bmatrix} l_1 \mapsto 5, \ l_2 \mapsto \lambda x.x, \ l_3 \mapsto 2+3 \end{bmatrix} \Rightarrow \dots$$

At most one evaluation step is possible in each component.

Overview of records Definition of the calculus

・ロン・西方・ ・ ヨン・ ヨン・

1

Overview of records (cont.)

A rewriting relation \rightarrow :

Computational soundness: rewriting steps preserve the meaning of a term, as defined by \Rightarrow .

Overview of records Definition of the calculus

Term-level calculus

Terms and term contexts:

$$\mathbb{E} ::= \Box | \mathbb{E} O M | \mathbb{E} + M | c + \mathbb{E}$$

c - constants, x, y, z - variables, / - labels, • - black hole.

 $\mathbb C$ - general context (the hole may be anywhere in a term), $\mathbb E$ -evaluation context.

 \mathbb{C} {*M*} is the result of \mathbb{C} with *M*.

Terms: $\lambda x.2 + 3$, $(\lambda x.x) @ \bullet, I_1 + 2$

Evaluation contexts: \Box , \Box + l_1 , \Box @ $\lambda x.x$

Non-evaluation general contexts: $\lambda x.\Box$, $(\lambda x.x) @ \Box$

Overview of records Definition of the calculus

Relations on terms

 \rightsquigarrow - the elementary reduction, \Rightarrow - evaluation, \rightarrow - rewriting relation (reduction).

Non-evaluation: $\hookrightarrow = \rightarrow \ \setminus \Rightarrow$ Examples:

$$egin{aligned} & (\lambda x.x) @ (2+3) \Rightarrow 2+3 \ & (\lambda x.x) @ (2+3) & \hookrightarrow & (\lambda x.x) @ 5 \end{aligned}$$

Overview of records Definition of the calculus

Record calculus

Records:

 $\mathbb C$ is a term context, $\mathbb E$ is a term evaluation context.

Records:
$$[l_1 \mapsto 2+3, l_2 \mapsto \lambda x.x, l_3 \mapsto l_2 \otimes l_1], [l_1 \mapsto \bullet, l_2 \mapsto \lambda x.l_1]$$

Evaluation context: $[l_1 \mapsto \Box + 2, l_2 \mapsto \lambda x. x, l_3 \mapsto l_2 @ l_1]$

Non-evaluation context: $[I_1 \mapsto 2+3, I_2 \mapsto \lambda x.\Box, I_3 \mapsto I_2 @ I_1]$

Overview of records Definition of the calculus

Relations on records: term reduction

Term reduction: reducing a component in a record.

$$\mathbb{D}\{R\} \rightarrow \mathbb{D}\{Q\}, R \rightsquigarrow Q \quad (T) \\ \mathbb{G}\{R\} \Rightarrow \mathbb{G}\{Q\}, R \rightsquigarrow Q \quad (TE)$$

Examples:

$$\begin{array}{ll} [l_1 \mapsto \mathbf{2} + \mathbf{3}, l_2 \mapsto \lambda x.x, l_3 \mapsto l_2 @ l_1] & \Rightarrow \\ [l_1 \mapsto \mathbf{5}, l_2 \mapsto \lambda x.x, l_3 \mapsto l_2 @ l_1] \\ [l_1 \mapsto \lambda x.\mathbf{2} + \mathbf{3}, l_2 \mapsto \lambda x.x, l_3 \mapsto l_2 @ l_1] & \hookrightarrow \\ l_1 \mapsto \lambda x.\mathbf{5}, l_2 \mapsto \lambda x.x, l_3 \mapsto l_2 @ l_1] \end{array}$$

▲口 > ▲圖 > ▲国 > ▲国 > 「国 」 今 Q ()~

Overview of records Definition of the calculus

Relations on records: substitution

Substitution:

$$\begin{array}{lll} \mathbb{D}\{I\} & \to & \mathbb{D}\{M\}, \ I \mapsto M \in \mathbb{D}\{I\}, \ \mathbb{D} \neq [I \mapsto \mathbb{E}, \dots] & (S) \\ \mathbb{G}\{I\} & \Rightarrow & \mathbb{G}\{M\}, \ I \mapsto M \in \mathbb{G}\{I\}, \ \mathbb{G} \neq [I \mapsto \mathbb{E}, \dots] & (SE) \end{array}$$

Examples:

$$\begin{bmatrix} l_1 \mapsto 2+3, l_2 \mapsto \lambda x.x, l_3 \mapsto l_2 @ l_1 \end{bmatrix} \Rightarrow \\ \begin{bmatrix} l_1 \mapsto 2+3, l_2 \mapsto \lambda x.x, l_3 \mapsto (\lambda x.x) @ l_1 \end{bmatrix} \\ \begin{bmatrix} l_1 \mapsto 2+3, l_2 \mapsto \lambda x.x, l_3 \mapsto l_2 @ l_1 \end{bmatrix} \\ \begin{bmatrix} l_1 \mapsto 2+3, l_2 \mapsto \lambda x.x, l_3 \mapsto l_2 @ (2+3) \end{bmatrix}$$

▲ロト▲圖ト▲臣と▲臣と 臣 のへぐ

Overview of records Definition of the calculus

Relations on records: black hole

Black hole • denotes apparent infinite substitution cycles. Black hole reductions:

$$\begin{bmatrix} I_1 \mapsto \mathbb{E}\{I_1\}, \dots \end{bmatrix} \Rightarrow \begin{bmatrix} I_1 \mapsto \bullet, \dots \end{bmatrix} \quad (B1) \\ \begin{bmatrix} I_1 \mapsto \mathbb{E}\{\bullet\}, \dots \end{bmatrix} \Rightarrow \begin{bmatrix} I_1 \mapsto \bullet, \dots \end{bmatrix} \quad (B2)$$

(B1) – introduction of \bullet :

$$[I_1 \mapsto I_1 + 1] \Rightarrow [I_1 \mapsto \bullet]$$

(instead of $[l_1 \mapsto l_1 + 1] \Rightarrow [l_1 \mapsto l_1 + 1 + 1] \Rightarrow ...)$ (B2) – propagation of •:

$$[l_1 \mapsto \bullet, l_2 \mapsto l_1 + 1] \Rightarrow [l_1 \mapsto \bullet, l_2 \mapsto \bullet + 1] \Rightarrow [l_1 \mapsto \bullet, l_2 \mapsto \bullet]$$

(ロ) (四) (三) (三) (三) (○)

Confluence of evaluation Computational soundness

Confluence of evaluation

Lemma (Confluence of Evaluation)

\Rightarrow is confluent on records.

A potential non-confluence example (similar to one in Ariola, Klop 1996):

$$[l_1 \mapsto 2 + l_2, l_2 \mapsto l_1 + 1] \Rightarrow [l_1 \mapsto 2 + l_1 + 1, l_2 \mapsto l_1 + 1] \\ [l_1 \mapsto 2 + l_2, l_2 \mapsto l_1 + 1] \Rightarrow [l_1 \mapsto 2 + l_2, l_2 \mapsto 2 + l_2 + 1]$$

Without a black hole both components in one record reference l_1 , both components in the second record reference l_2 . With a black hole both records evaluate to $[l_1 \mapsto \bullet, l_2 \mapsto \bullet]$:

$$\begin{bmatrix} l_1 \mapsto 2 + l_1 + 1, l_2 \mapsto l_1 + 1 \end{bmatrix} \Rightarrow \begin{bmatrix} l_1 \mapsto \bullet, l_2 \mapsto l_1 + 1 \end{bmatrix} \Rightarrow \\ \begin{bmatrix} l_1 \mapsto \bullet, l_2 \mapsto \bullet + 1 \end{bmatrix} \Rightarrow \begin{bmatrix} l_1 \mapsto \bullet, l_2 \mapsto \bullet \end{bmatrix}$$

Confluence of evaluation Computational soundness

Uniform normalization of \Rightarrow

Lemma

Given a record D, if there exists D' s.t.

• $D \Longrightarrow^* D'$

- D' is a normal form w.r.t. \Rightarrow ,
- no component in D' is bound to •,

then there is no infinite sequence $D \Rightarrow D_1 \Rightarrow D_2 \dots$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ ��や

Confluence of evaluation Computational soundness

イロト イポト イヨト イヨト 三日

Classification of terms

Terms are grouped into classes denoted by symbols, possibly with parameters. Terms in the same class have the same "meaning". CI(M) denotes the class of M:

- $Cl(\mathbb{E}\{R\}) = eval \text{ if } R \text{ is a redex. Such terms are called evaluatable.}$
- Cl(c) = const(c), where $\text{const}(c_1) = \text{const}(c_2)$ if and only if $c_1 = c_2$. i.e. $\text{const}(2) \neq \text{const}(3)$
- $Cl(\bullet) = \bullet$
- $Cl(\lambda x.N) = abs$
- *Cl*(E{*l*}) = stuck(*l*), where stuck(*l*₁) = stuck(*l*₂) if and only if *l*₁ = *l*₂
- CI(M) =error otherwise

Confluence of evaluation Computational soundness

Classification of records

A class of a record is determined by classes of its components:

• $CI([I_1 \mapsto M_1, \dots, I_n \mapsto M_n]) = [I_1 \mapsto CI(M_1), \dots, I_n \mapsto CI(M_n)]$ if $CI(M_i) \neq \bullet$ for all i s.t. $1 \le i \le n$

•
$$Cl([l \mapsto \bullet, \ldots]) = \bot$$

Example:

$$Cl([l_1 \mapsto \lambda x.x, l_2 \mapsto l_1 @ 1]) = [l_1 \mapsto abs, l_2 \mapsto stuck(l_1)]$$

A black hole in an evaluation context represents infinite divergence:

$$Cl([l_1 \mapsto \bullet, l_2 \mapsto 2+3]) = \bot$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

Outcome and computational soundness

The *outcome* of a record D, denoted Outcome(D), is:

- Cl(D') where D' is the normal form of D w.r.t. ⇒ if D has a normal form
- \perp if evaluation of *D* diverges.

A relation *R* is *meaning preserving* if *MRN* implies that Outcome(M) = Outcome(N).

A calculus is *computationally sound* if the reflexive, symmetric, transitive closure of \rightarrow is meaning preserving.

Theorem

Calculus of records is computationally sound.

 \Rightarrow is meaning-preserving by confluence and uniform normalization. Need to prove that \hookrightarrow is meaning-preserving.

Confluence of evaluation Computational soundness

Black hole and computational soundness

Some challenges in proving computational soundness:

$$[I_1 \mapsto I_2 @ 2, I_2 \mapsto \lambda x.I_1] \hookrightarrow [I_1 \mapsto I_2 @ 2, I_2 \mapsto \lambda x.I_2 @ 2]$$

The first record evaluates to a n.f. with a black hole:

$$\begin{bmatrix} l_1 \mapsto l_2 @ 2, l_2 \mapsto \lambda x. l_1 \end{bmatrix} \Rightarrow \\ \begin{bmatrix} l_1 \mapsto (\lambda x. l_1) @ 2, l_2 \mapsto \lambda x. l_1 \end{bmatrix} \Rightarrow \\ \begin{bmatrix} l_1 \mapsto l_1, l_2 \mapsto \lambda x. l_1 \end{bmatrix} \Rightarrow \\ \begin{bmatrix} l_1 \mapsto v_1, v_2 \mapsto \lambda x. v_1 \end{bmatrix}$$

The second one diverges:

$$\begin{array}{ll} [I_1 \mapsto I_2 @ 2, I_2 \mapsto \lambda x. I_2 @ 2] & \Rightarrow \\ [I_1 \mapsto (\lambda x. I_2 @ 2) @ 2, I_2 \mapsto \lambda x. I_2 @ 2] & \Rightarrow \\ [I_1 \mapsto I_2 @ 2, I_2 \mapsto \lambda x. I_2 @ 2] & \Rightarrow \end{array} ..$$

Meaning preservation of term reduction

Meaning preservation of a term reduction is proven using the lift/project approach (introduced in Machkasova&Turbak, 2000). *Lift* and *project* diagrams:

$$\begin{array}{ccc} D_1 = = \stackrel{*}{\Rightarrow} D_4 & D_1 \Longrightarrow D_2 = \stackrel{*}{\Rightarrow} D_4 \\ \uparrow & \uparrow & \uparrow \\ D_2 \Longrightarrow D_3 & D_3 = = = = = \stackrel{*}{\Rightarrow} D_5 \end{array}$$

Class preservation: if $D_1 \hookrightarrow D_2$ then $Cl(D_1) = Cl(D_2)$. If D_3 in *lift* is a normal form w.r.t. \Rightarrow , we obtain equivalence of outcomes of D_1 and D_2 . Similarly assuming that D_2 in *project* is a normal form.

Efficient evaluation strategy

Efficient evaluation strategy: a partial order on evaluation of record components; similar to *call-by-need*. Let $D = [I \mapsto M, ...]$. The efficient strategy to evaluate *I* is

defined as:

- If $M = \mathbb{E}\{R\}$, evaluate R.
- If $M = \mathbb{E}\{l'\}$ and l' is evaluated to M', substitute M' for l'.
- If M = E{l'} and M' is not a normal form, start evaluating M' using the efficient strategy.
- If *M* depends on or on *l* directly or transitively, then the efficient strategy stops and reports a cycle.
- If *M* is a substitution-free normal form, the efficient strategy for *l* in *D* is undefined.

Efficient evaluation strategy: example

A sequence that follows the efficient strategy; l_1 is the target label:

$$\begin{array}{ll} [l_1 \mapsto l_2, l_2 \mapsto l_3 + 2, l_3 \mapsto 1 + 3] & \Rightarrow \\ [l_1 \mapsto l_2, l_2 \mapsto l_3 + 2, l_3 \mapsto 4] & \Rightarrow \\ [l_1 \mapsto l_2, l_2 \mapsto 4 + 2, l_3 \mapsto 4] & \Rightarrow \\ [l_1 \mapsto l_2, l_2 \mapsto 6, l_3 \mapsto 4] & \Rightarrow \\ [l_1 \mapsto 6, l_2 \mapsto 6, l_3 \mapsto 4] & \Rightarrow \end{array}$$

A valid evaluation, but not efficient strategy (duplicated a redex):

$$\begin{bmatrix} l_1 \mapsto l_2, l_2 \mapsto l_3 + 2, l_3 \mapsto 1 + 3 \end{bmatrix} \quad \Rightarrow \\ \begin{bmatrix} l_1 \mapsto l_3 + 2, l_2 \mapsto l_3 + 2, l_3 \mapsto 1 + 3 \end{bmatrix} \quad \Rightarrow \dots$$

Any evaluation normal form can be reached by an efficient strategy.

(M_1, M_2) -similarity

Multihole contexts:

 $\mathbb{M} ::= \Box \mid \boldsymbol{M} \mid \lambda \boldsymbol{x}.\mathbb{M} \mid \mathbb{M} + \mathbb{M} \mid \mathbb{M} \otimes \mathbb{M}$

A record D_1 is called (M_1, M_2) -*similar* to a record D_2 (denoted $D_1 \sim_{M_2}^{M_1} D_2$) if there exist multi-hole contexts $\mathbb{M}_1, \ldots, \mathbb{M}_n$ s.t.

$$D_1 = [I_1 \mapsto \mathbb{M}_1\{M_1, \dots, M_1\}, \dots, I_n \mapsto \mathbb{M}_n\{M_1, \dots, M_1\}], \\ D_2 = [I_1 \mapsto \mathbb{M}_1\{M_2, \dots, M_2\}, \dots, I_n \mapsto \mathbb{M}_n\{M_2, \dots, M_2\}].$$

This means that some occurrences of M_1 in D_1 are replaced by M_2 in D_2 .

Meaning preservation of substitution

Suppose $D_1 \hookrightarrow D_2$ by a substituting a term M bound to I into a component labeled I'. Then $D_1 \sim_M^I D_2$ (base case). Use efficient evaluation strategy starting with labels I, I' (induction on the number of \Rightarrow steps). We prove that D_1 reaches a black-hole-free normal form if and only if D_2 does, and the resulting records remain (I, M)-similar:

If both records evaluate to normal forms then the differences are only in non-evaluation contexts, don't effect the class of n.f. (i.e the outcome).

Conclusions

- We have proven that a CBN system of mutually recursive components is computationally sound.
- Diagram-based approaches are problematic for such systems.
- The context-based method allows us to prove computational soundness.

Future work:

• Study applicability of the context method to other systems with cyclic dependencies: letrec calculi; modules and linking

ヘロト ヘアト ヘヨト ヘ

• Continue comparison with other methods of proving computational soundness.

Selected bibliography

More detailed presentation, see http://cda.morris.umn.edu/~elenam/

- E. Machkasova: Computational Soundness of a Call by Name Calculus of Recursively-scoped Records. Working Papers Series, University of Minnesota, Morris, Vol. 2 Num. 3, 2007.
- E. Machkasova, E. Christiansen: Call-by-name Calculus of Records and its Basic Properties. Working Papers Series, University of Minnesota, Morris, Vol. 2 Num. 2, 2006

Related work:

- G. D. Plotkin: Call-by-name, call-by-value and the lambda calculus. Theoret. Comput. Sci., 1975.
- E. Machkasova, F. Turbak: A calculus for link-time compilation. ESOP 2000
- J. B. Wells, Detlef Plump, and Fairouz Kamareddine: Diagrams for meaning preservation. RTA 2003
- M. Schmidt-Schauß: Correctness of copy in calculi with letrec. RTA 2007.