
Computational Soundness of a Call by Name

Calculus of Recursively-scoped Records.

UMM Working Papers Series, Volume 2, Num. 3.

Elena Machkasova

Contents

1 Introduction and Related Work 1
1.1 Introduction . 1
1.2 Related Work . 2

2 Call-by-Name Calculus of Records 3
2.1 Term Level Calculus. 3
2.2 Record Level Calculus . 5
2.3 Calculus Relations . 6

2.3.1 Relations at the level of records. 7

3 Confluence of Evaluation 10
3.1 An Efficient Evaluation Strategy 13

4 Computational Soundness of the Calculus 18
4.1 Definition of Computational Soundness 18

4.1.1 Classification function. 18
4.1.2 Outcome and Computational Soundness. 20

4.2 Proof Methods and Their Applicability 20
4.2.1 Failure of Confluence and Standardization Proof Method 20
4.2.2 Failure of Lift and Project Method 21
4.2.3 Applicability of Other Diagram-Based Methods. 22

4.3 Proof of Meaning Preservation of the Term Reduction 22
4.4 Meaning Preservation of Substitution 26

4.4.1 Multi-hole Contexts and Similarity. 26
4.4.2 The Proof of Meaning Preservation of a Substitution Step. 28
4.4.3 Proof of Lemma 16. 31

4.5 Computational Soundness Theorem 39

5 Conclusions and Future Work 40
5.1 Acknowledgments . 40

Abstract

The paper presents a calculus of recursively-scoped records: a two-level calculus
with a traditional call-by-name λ-calculus at a lower level and unordered col-
lections of labeled λ-calculus terms at a higher level. Terms in records may ref-
erence each other, possibly in a mutually recursive manner, by means of labels.
We define two relations: a rewriting relation that models program transforma-
tions and an evaluation relation that defines a small-step operational semantics
of records. Both relations follow a call-by-name strategy. We use a special
symbol called a black hole to model cyclic dependencies that lead to infinite
substitution.

Computational soundness is a property of a calculus that connects the rewrit-
ing relation and the evaluation relation: it states that any sequence of rewriting
steps (in either direction) preserves the meaning of a record as defined by the
evaluation relation. The computational soundness property implies that any
program transformation that can be represented as a sequence of forward and
backward rewriting steps preserves the meaning of a record as defined by the
small step operational semantics.

In this paper we describe the computational soundness framework and prove
computational soundness of the calculus. The proof is based on a novel inductive
context-based argument for meaning preservation of substituting one component
into another.

Chapter 1

Introduction and Related
Work

1.1 Introduction

In this work we present a call-by-name calculus of recursively-scoped records.
Recursively-scoped records (called records for the remainder of the paper) are
unordered collections of labeled components that may reference each other, pos-
sibly in a mutually recursive manner. Representation of mutual dependencies
arises in many calculi that model separate compilation, modules and linking,
e.g. [1, 15], dynamic code manipulation, e.g. [6], letrec, e.g. [12]. While
our system has a much more modest set of features, it captures the essence of
mutual dependencies - substitution with a possibility of cyclic dependencies.

We use a common approach pioneered by G. Plotkin in [11] of defining two
relations in a system: a rewriting relation that represents program transforma-
tions and an evaluation relation that defines the meaning of a term via small-step
operational semantics. Computational soundness connects the two relations: it
implies that any two terms that are equivalent with respect to the rewriting
relation have the same meaning as defined by the evaluation relation. Thus
any program transformation that can be constructed as a sequence of rewriting
steps (forward and/or backward) preserves the meaning of a term.

In our work both the rewriting relation and the evaluation follow the call-
by-name strategy. Since this strategy allows β-reduction and substitution of
unevaluated terms, the repertoire of transformations represented by the rewrit-
ing relation is greatly expanded to include unrestricted common subexpression
elimination within a record, specialization, etc. The computational soundness
result implies that all such transformations on mutually dependent components
are meaning preserving, and thus can be used in a variety of systems modeling
modules and linking, mutual dependencies in a letrec binding, etc. Our fu-
ture plan is to investigate whether the meaning preservation result holds if the
evaluation is restricted to a more efficient call-by-value strategy, while transfor-

1

mations follow a more liberal call-by-name one.
As demonstrated in section 4.2, our calculus fails to satisfy properties re-

quired for some previously known proof methods for computational soundness:
it lacks confluence of the rewriting relation required for Plotkin’s original proof
method and it fails to satisfy lift and project properties required for the approach
in [10]. We use a novel context-based approach to complete the proof. It is an
open question whether the proof can also be completed using an alternative
diagram-based approach in [14].

The main contribution of the paper is the computational soundness proof of
a call-by-name calculus of mutually dependent components in the framework of
term meaning defined via a small-step operational semantics.

1.2 Related Work

G. Plotkin in [11] has proven a property equivalent to computational soundness
for the call-by-name and the call-by-value term calculi. Z. M. Ariola and J. W.
Klop studied issues of confluence and meaning preservation in similar systems
of mutually dependent components. The straightforward definition of such a
system breaks confluence (see [3]). In [4], in order to achieve confluence, sub-
stitution on cycles is disallowed. In [2] Z. M. Ariola and S. Blom show that
unrestricted cyclic substitution is meaning preserving up to infinite unwindings
of terms; their proof uses an approach that they call “skew-confluence”.

In our earlier work [10, 7], we proved computational soundness of a non-
confluent call-by-value calculus of records similar to the one considered here.
We developed and used a diagram-based proof method based on properties
that we called lift and project. This approach has been further extended and
generalized to a collection of abstract diagram-based proof methods in [14].
However, the system considered here does not meet the requirements of the
lift and project method (see Section 4.2) and it is unclear whether it can be
handled using diagram-based methods presented in [14]. Nevertheless, the novel
inductive context-based method presented here allows us to prove computational
soundness of the call-by-name system.

A recent independent work [13] by M. Schmidt-Schauß presents a proof of
correctness of a copy rule (analogous to our substitution rule) in a call-by-
need and a call-by-name settings. The proof approach uses the machinery of
infinite trees and is significantly different from our context-based approach. The
relation between the applicability of the two proof methods is a subject of future
research.

2

Chapter 2

Call-by-Name Calculus of
Records

Records are unordered collections of labeled terms. Terms are elements of the
traditional call-by-name λ-calculus [5], extended with constants, operations, and
special symbols that represent interdependencies between terms. Each term in
a record is marked by its unique label. The system can be viewed as a two-level
calculus, with regular terms at the lower level and records at the upper level.

2.1 Term Level Calculus.

The term level of the calculus is defined below. We use prefix T for sets at the
term level (such as TTerm), R is used at the level of records.

Definition 1 (Term-Level Calculus Syntax).

M,N ∈ TTerm ::= c | x | l | • | λx.M | M1 @ M2 | M1 + M2

C ∈ TContext ::= � | λx.C | C @ M | M @ C | C + M | M + C
E ∈ TEvalContext ::= � | E @ M | E + M | c + E
N ∈ TNonEvalCntxt N ∈ TContext, N 6∈ TEvalContext

M,N denote terms, c stands for constants, such as numbers 1, 2, etc., x, y, z
are variables (distinct from constants), l stands for labels (distinct from vari-
ables and constants), • is a special symbol that denotes a black hole, i.e. a
cyclic dependency of a record component on itself, λx.M is a lambda abstrac-
tion, M1 @ M2 is an application, M1 + M2 is a binary operation on terms.
For simplicity we only use addition in our examples, but other operations can
be added. The scope of a lambda binding extends as far to the right as possi-
ble, unless limited by parentheses. It is straightforward to extend the calculus
with booleans, conditionals, and other features, but for simplicity they are not
considered here.

3

The set of free variables of a term M , written FV (M), is defined in Defini-
tion 2. Labels are distinct from variables, and thus are not included in FV (M).
We use ≡ to denote syntactic equivalence of terms: if M ≡ N then the two terms
are identical. In particular they have the same names of all bound variables.

Definition 2 (Free variables). The set of free variables of a term M ∈ TTerm,
written FV(M), is defined as follows:

FV (x) = {x},
FV (c) = ∅,
FV (l) = ∅,
FV (•) = ∅,

FV (λx.M) = FV (M)\{x},
FV (M1 @ M2) = FV (M1) ∪ FV (M2),

FV (M1 + M2) = FV (M1) ∪ FV (M2).

Following [5], we define α-equivalence of terms the following way:

Definition 3 (α-equivalence). 1. An elementary α-renaming1 →α is a re-
lation on terms defined as C{λx.N} →α C{λy.N [x := y]}, where y does
not occur in N (neither bound, nor unbound).

2. M is α-equivalent (or α-congruent) to N , denoted M =α N , if M →∗
α N ,

where →∗
α is the reflexive transitive closure of →α.

Note that →∗
α is symmetric, therefore →∗

α is the same as =α and is an
equivalence relation. We will also write = to mean =α and distinguish it from
syntactic equivalence ≡.

The following definition of substitution is also traditional (e.g., see [5]), with
added cases for labels, black hole, and operations.

Definition 4 (Variable substitution in terms). The result of a capture-avoiding
substitution of a term M ′ for a variable x in term M is written M [x := M ′]
and is defined as follows:

x[x := M] = M,
y[x := M] = y , if x 6= y,
c[x := M] = c,
l[x := M] = l,
•[x := M] = •,

(N @ N ′)[x := M] = (N [x := M]) @ (N ′[x := M]),
(N + N ′)[x := M] = (N [x := M]) + (N ′[x := M]),

(λx.N)[x := M] = λx.N,
(λy.N)[x := M] = λy.(N [x := M]) if x 6= y and (x 6∈ FV (N) or y 6∈ FV (M)),
(λy.N)[x := M] = λz.(N [y := z][x := M]),where z 6∈ (FV (M) ∪ FV (N)),

if x 6= y, x ∈ FV (N), and y ∈ FV (M).

1called a change of bound variables in [5]

4

Contexts are used as a way of specifying a particular subterm in a term. We
use C as a metavariable for a term context, E as a metavariable for a subset of
general contexts called evaluation contexts, and N for the complement of this
subset called non-evaluation contexts. The symbol � denotes a context hole. As
an example, in the term 2+λx.3 the subterm 2 appears in the context �+λx.3
(an evaluation context) and 3 appears in 2 + λx.� (a non-evaluation context,
since � is under a λ). Definition 7 uses evaluation contexts as means to specify
a subterm to be evaluated according to the evaluation relation. If a subterm
appears in a non-evaluation context, it will not be reduced by evaluation.

C{M} denotes the result of filling the hole in the context C with the term M .
For instance, if C = λx.� and M = x+2 then C{M} = λx.x+2. The notation
for filling an evaluation context or a non-evaluation context is analogous. We
can also fill a hole in a context with another context (denoted as C1{C2}),
the result is a context. Note that it is possible to capture free variables of M
when filling a context hole. Thus we do not introduce α-renaming of contexts.
Definition 19 introduces contexts with multiple holes.

The following lemma states an important property of contexts:

Lemma 1. Given one-hole contexts C1 and C2, C1{C2} ≡ E if and only if both
C1 and C2 are evaluation contexts.

Proof. By induction on the structure of an evaluation context.

2.2 Record Level Calculus

Definition 5 (Record-Level Calculus).

D ∈ RTerm ::= [l1 7→ M1, ..., ln 7→ Mn], li 6= lj for i 6= j
D ∈ RContext ::= [l 7→ C, l1 7→ M1, . . . , ln 7→ Mn], C ∈ TContext
G ∈ REvalContext ::= [l 7→ E, l1 7→ M1, . . . , ln 7→ Mn], E ∈ TEvalContext

D denotes a record with bindings of the form li 7→ Mi. If li 7→ Mi occurs in a
record, we say the term M is bound to the label l. We use notation l 7→ M ∈ D
to indicate that the binding l 7→ M occurs in D. L(D) denotes the set of all
labels of D.

Assumption 1 (Closed Term). We assume that all terms in a record are closed,
i.e. for any record D = [l1 7→ M1, ..., ln 7→ Mn] we have ∪n

i=1FV (Mi) = ∅.

Recall that labels are separate from variables and are not included in FV (M),
thus labels are not affected by the assumption.

The following is an example of a record: [l1 7→ 2 + 3, l2 7→ λx.x, l3 7→ l2 @ l1].
It has three components, labeled by l1, l2, and l3, respectively. The term 2 + 3
is bound to l1, λx.x is bound to l2, and the component bound to l3 references
the first two by applying one to the other.

Definition 5 also introduces two record-level contexts: a general record con-
text D and record evaluation context G. For instance, [l1 7→ 2 +�, l2 7→ λx.x]

5

is a record-level evaluation context (and also a general context since evaluation
contexts are a subset of general contexts). Record-level contexts are filled with
terms, not with records. For instance, one may fill the above context with a
term 3 obtaining the record [l1 7→ 2 + 3, l2 7→ λx.x].

Record components are unordered, i.e two records that differ only in the
order of their components are considered equivalent. We define α-renaming
of records as α-renaming of bound variables in their components (recall that
records consist of closed terms). Since records are intended to be embedded in
larger systems, such as program modules, record components may be referenced
from outside of a record. Thus there is no label renaming analogous to α-
renaming of terms2.

Definition 6 (Equivalence and Equality of Records). Two records D1 and D2

are considered syntactically equivalent (D1 ≡ D2) if the following holds: li 7→
Mi ∈ D1 if and only if li 7→ M ′

i ∈ D2 and Mi ≡ M ′
i . Likewise, two records are

equal (D1 = D2) if li 7→ Mi ∈ D1 if and only if li 7→ M ′
i ∈ D2 and Mi = M ′

i .

2.3 Calculus Relations

Both levels of the calculus follow the call-by-name reduction strategy. We define
a rewriting relation → (which we also call reduction) and evaluation relation ⇒
at the two levels of the calculus in definitions 7 and 9 respectively. Intuitively,
the reduction relation represents transformations (i.e. “optimizations”) of terms
and records, and the evaluation relation represents the way records are evaluated
at run-time by an evaluation engine (such as an interpreter). As discussed in
section 4, the meaning of a record is defined by the result (called the outcome)
of its evaluation.

At a more technical level, the difference between the two relations is that the
rewriting relation reduces a redex in any context, while the evaluation reduces
a redex in an evaluation context.

Definition 7 (Relations at the Term Level). The rewriting relation → and the
evaluation relation ⇒ at the term level are defined as follows:

(λx.M) @ N M [x := N] (β)
c1 + c2 c3 where c3 is the result of operation (op)
E{R} ⇒ E{Q} where R Q
C{R} → C{Q} where R Q

The arrow denotes the “elementary” reduction, i.e. the basic operations at
the term level of the calculus: a call-by-name β-reduction (M [x := N] stands for
the result of the capture-free substitution of N for x in M) and an operation (op)
that replaces an operation on two constants by their result, also a constant. The

2It is possible to add hidden components to records that cannot be referenced from outside
of a record (see [10]). Records then are identified up to renaming of hidden labels. How-
ever, here we focus on computational soundness of mutually recursive components which is
independent from the issue of hidden labels.

6

rewriting relation → can perform an elementary reduction in any context C, i.e.
anywhere inside a term. The evaluation step ⇒ performs the same operations
but only in an evaluation context. TEvalContext ⊆ TContext implies ⇒⊆→.

Notations below are used at both the term and the record level:

Definition 8 (Non-evaluation Relation and Closures). 1. A non-evaluation
relation ↪→ is defined as ↪→=→ \ ⇒.

2. →∗, ⇒∗, ↪→∗ denote reflexive transitive closures of the respective relations;
↔, n↔ denote the reflexive symmetric transitive closures of → and ↪→,
respectively.

One can equivalently define ↪→ as a reduction in a non-evaluation context.
The term that matches the left-hand side of an elementary reduction rule is

called a term redex. R denotes redexes. Intuitively, a redex is the subterm that
gets reduced by the reduction. The redex is enclosed in a context that remains
unchanged by the reduction3. As an example, in the reduction λx.2+3 → λx.5
the redex is 2+3 and the context is λx.�. In the evaluation step 1+(λx.x) @ 3 ⇒
1 + 3 the redex is (λx.x) @ 3 and the context is 1 +�.

Lemma 2. If E1{R1} ≡ E2{R2}, where R1, R2 are redexes, then E1 ≡ E2 and
R1 ≡ R2. If M ≡ E1{l1} ≡ E2{l2} then E1 ≡ E2 and l1 = l2 and M 6= E{R}
for any E and R.

Recall that if two terms are equal then we can choose syntactically equiv-
alent representatives of their α-equivalence classes. In this sense we generalize
Lemma 2 to equality:

Lemma 3. If E1{R1} = E2{R2}, where R1, R2 are redexes, then E1 ≡ E2 and
R1 = R2. If M = E1{l1} = E2{l2} then E1 ≡ E2 and l1 = l2 and M 6= E{R}
for any E and R.

Lemma 3 says that there may be at most one redex in an evaluation context
in a term. It is not possible that the same term has a redex and a label both
appearing in an evaluation context or two labels, both appearing in an evaluation
context.

2.3.1 Relations at the level of records.

Following the call-by-name strategy, both a reduction of an individual compo-
nent and a substitution from one component into another one may copy an
unevaluated term.

3More precisely, it is possible to find such representatives M, N in the α-equivalence classes
of the original and the reduced term, respectively, that M → N by reducing the given redex
in the given context and the context remains unchanged.

7

Definition 9 (Relations at the Level of Records).

D{R} → D{Q} where R Q (T)
D{l} → D{N} where l 7→ N ∈ D{l}, D 6= [l 7→ E, . . .] (S)
G{R} ⇒ G{Q} where R Q (TE)
G{l} ⇒ G{N} where l 7→ N ∈ G{l}, G 6= [l 7→ E, . . .] (SE)
[l1 7→ E{l1}, ...] ⇒ [l1 7→ •, ...] (B1)
[l1 7→ E{•}, ...] ⇒ [l1 7→ •, ...] (B2)

Definition 9 gives three kinds of reductions on records, two of which have an
evaluation and a rewriting versions.

• A term reduction simply reduces a term redex in one of the record’s com-
ponents. It is a rewriting step (see rule T) when it happens in a general
context and an evaluation step (rule TE) when it happens in an evaluation
context. For example, [l1 7→ λx.2 + 3] → [l1 7→ λx.5] is a rewriting step,
but not an evaluation step. Such steps are called non-evaluation steps (see
Definition 8).

• A substitution replaces a label occurring in a component of a record by
the term bound to that label in the record. Analogously to the term
reduction, the substitution is a rewriting step (rule S) if the label occurs
in a general context, and an evaluation step (rule SE) if it occurs in an
evaluation context.

For example, [l1 7→ 2 + 3, l2 7→ l1 + 1] ⇒ [l1 7→ 2 + 3, l2 7→ (2 + 3) + 1]
is an evaluation step since � + 1 is an evaluation context. The following
substitution is a reduction, but not an evaluation step, since l1 appears
under a lambda: [l1 7→ 2 + 3, l2 7→ λx.l1] → [l1 7→ 2 + 3, l2 7→ λx.(2 + 3)].
Note that, just like a term reduction, the substitution is call-by-name: the
term that gets substituted does not have to be evaluated first.

The side conditions D, G 6= [l 7→ E, . . .] eliminate an ambiguity between
substitution and the black hole rule (B1) by preventing a substitution
into a label that directly depends on itself in an evaluation context. For
instance, the following substitution is not allowed: [l1 7→ l1 + 1] ⇒ [l1 7→
l1 + 1 + 1], the rule (B1) is applied instead (see below).

• A black hole symbol • denotes apparent infinite substitution cycles that
cannot be meaningfully evaluated. The rule (B1) introduces a black hole
to replace a label that depends on itself in an evaluation context. For
instance, [l1 7→ l1 + 1] ⇒ [l1 7→ •] instead of an infinite substitution
[l1 7→ l1 + 1] ⇒ [l1 7→ l1 + 1 + 1] ⇒ . . . The notion of a black hole was
first introduced in [3]. In this work it is essential for confluence of ⇒ on
records.

The rule (B2) turns a component that depend on a black hole into a black
hole: [l1 7→ •, l2 7→ l1 + 1] S=⇒ [l1 7→ •, l2 7→ •+ 1] B2=⇒ [l1 7→ •, l2 7→ •].

8

The black hole rules do not have analogous non-evaluation rules since a
self-dependency in a non-evaluation context may be a legitimate recur-
sion and does not always lead to infinite substitution cycle or it may be
eliminated during evaluation.

Just as at the term level, relations on records are defined on α-equivalence
classes:

Lemma 4. If D1 → D2 and D1 =α D′
1 then there is D′

2 s.t. D′
1 → D′

2 and
D2 =α D′

2. Moreover, the reduction is an evaluation step D1 ⇒ D2 if and only
D′

1 ⇒ D′
2.

The following lemma summarizes an obvious, but important, observation:

Lemma 5. In the substitution rules (S) and (SE) in definition 9 FV (N) = ∅.

Proof. Assumption 1 states that any term bound to a label in a record is closed.

A normal form of a term with respect to a relation R is a term that cannot
be further reduced by R. The definition is applicable to both terms and records.

Definition 10 (Normal Form). Given a relation R on a set of terms, a normal
form with respect to (w.r.t.) R is a term M for which there is no M ′ such that
MRM ′. The predicate nfR(M) is true if M is a normal form w.r.t. R and
false otherwise. A term N is an R-normal form of M if MR∗N and nfR(N).

As an example, nf→(λx.2+3) = false since the term can be further reduced:
λx.2 + 3 → λx.5. However nf⇒(λx.2 + 3) = true since the term does not have
a redex in an evaluation redex. λx.5 is a normal form of λx.2 + 3 w.r.t. →.

9

Chapter 3

Confluence of Evaluation

It follows from Lemma 3 that there is at most one evaluation step in any record
component. For instance, if a component is of the form E{R}, i.e. it has a term
evaluation redex, it may not have a label in an evaluation context.

However, there is no ordering on components in a record, so any component
that has a term or a substitution redex may be evaluated. Thus it is possible
to have multiple evaluation steps originating at the same record:

[l1 7→ 2 + 3, l2 7→ l1 + 1,] ⇒ [l1 7→ 5, l2 7→ l1 + 1]
[l1 7→ 2 + 3, l2 7→ l1 + 1,] ⇒ [l1 7→ 2 + 3, l2 7→ 2 + 3 + 1]

This flexibility opens a way for modeling separate compilation and evaluation
of modules: evaluation of known components may start before the entire record
becomes available.

The calculus of records has the following property:

Lemma 6. ⇒ is confluent on records.

Proof. Case analysis on pairs of evaluation redexes shows that evaluation sat-
isfies the strip lemma (see [5], Ch. 11), i.e. given D1 ⇒ D2 and D1 ⇒∗ D3,
there exists D4 such that D2 ⇒∗ D4 and D3 ⇒∗ D4. The strip lemma implies
confluence. See [9] for details of the proof 1.

The presence of a black hole in the calculus is essential for confluence of eval-
uation. Consider the following record: [l1 7→ 2 + l2, l2 7→ l1 + 1]. Note that both
labels are in evaluation contexts in both components. Without a black hole the
substitution into the first component would yield [l1 7→ 2 + l1 + 1, l2 7→ l1 + 1],
substitution into the second component gives [l1 7→ 2 + l2, l2 7→ 2 + l2 + 1]. In
the first resulting record both components reference l1, in the second one they
both reference l2, and any subsequent substitutions preserve these properties.
This is a variation of a famous non-confluence example introduced in [3].

1The black hole rules in the system in [9] differ slightly from the rules presented here
because of additional properties satisfied by the system that are not required here. However,
the difference in rules does not affect the essence of the proof.

10

However, a black hole allows us to bring these two records together by a
sequence of evaluation steps since both labels appear in an evaluation context,
and thus represent an infinite cycle of substitutions:

[l1 7→ 2 + l1 + 1, l2 7→ l1 + 1] ⇒
[l1 7→ •, l2 7→ l1 + 1] ⇒
[l1 7→ •, l2 7→ •+ 1] ⇒
[l1 7→ •, l2 7→ •]

The record [l1 7→ 2 + l2, l2 7→ 2 + l2 + 1] also evaluates to [l1 7→ •, l2 7→ •]:

[l1 7→ 2 + l2, l2 7→ 2 + l2 + 1] ⇒
[l1 7→ 2 + l2, l2 7→ •] ⇒
[l1 7→ 2 + •, l2 7→ •] ⇒
[l1 7→ •, l2 7→ •] ⇒

Confluence of evaluation guarantees uniqueness of a normal form w.r.t. ⇒ if
a term has one. However, in general confluence of evaluation does not prevent
a term from having a normal form and diverging at the same time, as long
as every term on a diverging path has an evaluation sequence leading to the
normal form. The lemma below states that this situation does not occur in our
calculus, i.e. a term may not have a normal form and diverge at the same time
(this property is also known as uniform normalization).

Lemma 7. If D ⇒∗ D′, nf⇒(D′), and no component in D′ is bound to •, then
there is no infinite sequence D ⇒ D1 ⇒ D2 ⇒∗

Proof. Suppose there exists a record D such that D
l′=⇒ D′

1, there is no diverging
evaluation sequence starting at D′

1, and the normal form of D does not have
a black hole. Also assume that D

l=⇒ D1 s.t. D1 has a diverging evaluation
sequence D1

l1=⇒ D2
l2=⇒ D3 ⇒∗ The labels over the arrows denote labels

of components reduced in the given evaluation steps.
We show that we can transform the diverging sequence of D1 into a diverging

sequence of D′
1, thus obtaining a contradiction.

Suppose that l′ does not participate in the given infinite evaluation sequence,
i.e. the component bound to l′ is not evaluated and not copied by a substitution.
Then we can reduce components l, l1, l2, etc. in D′

1, following the diverging
sequence for D1. Since l′ is not used in this sequence, all of the steps are
exactly the same in D′

1 as they are in D1, thus there exists a diverging sequence
for D′

1 which contradicts the assumption.
Now suppose that l′ is used in the infinite evaluation sequence. We have

several possibilities:

1. The component bound to l′ is of the form E{R}, where R is a term redex.

Suppose it is evaluated to E{Q} in the step D
l′=⇒ D′

1. Note that R ap-
pears in an evaluation context, and thus any step in the given diverging

11

sequence that copies R into another component also places it in an eval-
uation context. To easier keep track of copies of R, let us assume that all
such copies are marked D1 (for instance, by underlining) and the marks
are preserved by substitution. Note that if a marked copy of R reduces to
a term that is syntactically identical to R, the new copy would correspond
to Q, not to R, and thus would not be marked. As an example, consider
R = (λx.x @ x) @ (λx.x @ x). Then Q has the exact same form as R but
was not obtained as a copy of R so it is not marked.

Let us construct the following evaluation sequence starting at D′
1: we

follow the evaluation steps of the sequence D
l=⇒ D1

l1=⇒ D2
l2=⇒ D3 ⇒∗

. . . . However, when R needs to be reduced in this sequence, we skip the
first step of this evaluation, namely the step that reduces a marked copy
of R to Q since it has been already performed in D1.

The resulting sequence must be a diverging sequence in D′
1 since there

may not be an infinite number of reductions of copies of R without an
infinite number of copying steps. All copying steps are preserved in the
sequence that starts at D′

1. Thus even if we remove an infinite number of
reductions of R, the resulting sequence is still infinite.

2. The component bound to l′ is of the form E{l′′}, where l′′ 6= l. The
argument is similar to that in the previous case, although it requires adding
some steps in D′

1, not just skipping steps.

Suppose the substitution changes the component to E{M} in D′
1. We

mark the corresponding occurrence of l′′ in D and also mark the copied
term M in D′

1. We construct a diverging sequence for D′
1 by performing

the same evaluation steps as in the sequence D
l=⇒ D1

l1=⇒ D2
l2=⇒

D3 ⇒∗ Every time a substitution replaces a marked l′′ in the original
sequence, the constructed sequence skips a step. However, every time an
evaluation step is performed on the l′′ component in the original sequence,
all marked copies of M are reduced accordingly. This guarantees that after
each substitution into l′′ the two records are the same, except for some
copies of l′′ in D1 replaced by terms in D′

1.

It is also not possible that D′
1 encounters a black hole when D1 does not.

Note that all teh copied redexes are in evaluation contexts. Therefore if
any component with a copy of M references itself directly or indirectly,
it must be the case that l′′ also references that component. Thus the
two terms (denoted by Dn and D′

n since they appear at some point on
the evaluation path) would be as follows (we are showing a direct self-
dependency):

Dn = [l′′ 7→ E1{l1}, l′ 7→ E2{l′′}, l1 7→ E3{l1}]
D′

n = [l′′ 7→ E1{l1}, l′ 7→ E′2{l1}, l1 7→ E3{l1}]

Both records evaluate to a black hole.

12

As in case 1, the constructed evaluation sequence must be infinite since
even if the number of substitutions performed in D1 that do not appear
in D′

1 is infinite, there must be an infinite number of steps that remain
since creating an infinite number of copies of a marked l′′ would require
an infinite number of steps.

3. The component bound to l′ is of the form E{l}. In this case D,D1, and
D′

1 are of the following form:

D = [l 7→ M, l′ 7→ E{l}, . . .]
D1 = [l 7→ M ′, l′ 7→ E{l}, . . .]
D′

1 = [l 7→ M, l′ 7→ E{M}, . . .]

Note that since l′ references l, l cannot reference l′ because this would
reduce the record to a black hole. Therefore if M ′ is the result of a
substitution of a variable into M , that variable cannot be l′. In this case
we start the constructed evaluation sequence for D′

1 as

D′
1 = [l 7→ M, l′ 7→ E{M}, . . .] ⇒

D′
2 = [l 7→ M ′, l′ 7→ E{M}, . . .]

D′
3 = [l 7→ M ′, l′ 7→ E{M ′}, . . .]

Then D1 and D′
3 are as in case 2 above, and the construction given in

that case is applicable.

In all of the given cases the assumption that D1 has an infinite evaluation se-
quence and D′

1 does not leads to a contradiction. Note that since the record
has a black-hole-free normal form w.r.t. evaluation, there may not be evalua-
tion self-dependencies in any of the labels or a mutual evaluation dependency
between the two labels. Thus no more cases are possible.

We have shown that it is not possible that a record D has a normal form
and a diverging evaluation sequence.

3.1 An Efficient Evaluation Strategy

Confluence of evaluation guarantees that no matter what paths an evaluation of
a record takes, all of the resulting records can be evaluated to the same one. We
do not want to fix the order of evaluating components since we would like to have
the flexibility of modeling systems where progress can be made on evaluating a
record before all of its components become available or where components may
be evaluated in parallel.

However, for proving properties of our calculus it is convenient to impose
a particular order of evaluation that we call efficient evaluation strategy. Intu-
itively, this strategy requires that if a component bound to l1 needs a component
bound to l2 (i.e. the component bound to l1 is of the form E{l2}) then the term
bound to l2 must be completely evaluated (i.e. it has neither term redexes nor
substitution redexes) before the substitution into the component bound to l1

13

is made. This strategy imposes a partial order on components. The strategy
stops if it discovers a cycle of mutual dependencies.

The formal definition depends on the partial function next(D, l) that defines
the label of the component in which the next evaluation step takes place in
order to make progress on evaluation of the component bound to l in D.

Definition 11 (Next Component To Be Evaluated). Let l 7→ M ∈ D. A
function next(D, l) : RTerm× L(D) → L(D) ∪ {•} is defined as follows:

1. If M = E{R} then next(D, l) = l,

2. If M = E{•} or M = E{l} then next(D, l) = •,

3. If M = E{l′} then:

(a) If next(D, l′) is undefined, next(D, l) = l,

(b) If next(D, l′) = • or l′ is bound to E′{l} or there is a sequence of
labels l1, . . . , ln ∈ L(D), n ≥ 1, such that D is of the form

[l 7→ E{l′}, l′ 7→ E1{l1}, . . . , li 7→ Ei{li+1}, . . . , ln 7→ En{l}, . . .]

then next(D, l) = •,
(c) Otherwise next(D, l) = next(D, l′).

4. Otherwise next(D, l) is undefined.

If next(D, l) is undefined then the component bound to l is fully evaluated.
Let L denote an ordered sequence of distinct labels; L1 � L2 means that

L1 is a prefix of L2 or L1 = L2. An efficient evaluation strategy follows the
sequence of labels in L as a sequence of “goals”.

Definition 12 (Efficient Evaluation Strategy). Given a record D and a label
l, an efficient evaluation strategy starting at l is a sequence of evaluation steps
D1 ⇒ D2 ⇒ . . . ⇒ Dn s.t. for all i < n next(Di, l) is defined and not equal to •
and an evaluation step Di ⇒ Di+1 evaluates the component bound to next(Di, l).

We denote this sequence as D
l

=⇒∗
e

Dn.

Given a sequence L = l1, l2, . . . ln s.t. li ∈ L(D) for all i, an efficient strategy

w.r.t. L is a sequence D
l1

=⇒∗
e

D1

l2
=⇒∗

e
. . .

ln
=⇒∗

e
Dn s.t. next(Di, lj) is undefined

for all j < i for 1 ≤ i ≤ n (i.e. each component lj in L is fully evaluated before
evaluation of li starts). Note that it is possible that next(Dn, ln) is not undefined.

An efficient strategy w.r.t. L is denoted
L

=⇒∗
e

.

The efficient evaluation strategy stops if it discovers that a record com-
ponent evaluates to a black hole since such records represent divergence (see
Definition 15). Thus, if next(D, l) = •, no evaluation takes place.

The strategy is called “efficient” because it evaluates a component only once
- the first time it is needed. Since no unevaluated components are copied, no

14

computation is duplicated. This is similar to a call-by-value or a call-by-need
strategy. However, unlike the call-by-value strategy, it does not require that
a component evaluates to a value before it can be substituted (traditionally
only constants, variables, and λ-abstractions are considered values), only to a
substitution-free normal form which includes errors. This is also technically
different from a call-by-need strategy since the evaluation of a λ-application still
follows a call-by-value strategy, copying arguments rather than sharing them.

If a record D evaluates to a normal form D′ then efficient evaluation strategy
with any choice of L that includes all labels in L(D) reaches D′. The strategy
detects cycles of substitution as early as possible since the evaluation follows
component dependencies as far as possible before evaluating any of them.

Below is an evaluation sequence that follows the efficient strategy w.r.t. l1.
On the left on line i we show the value of next(Di, l1). For simplicity we write
just next(l) instead of next(D, l) since the record on each line is obvious.

next(l1) = l3 [l1 7→ l2, l2 7→ l3 + 2, l3 7→ 1 + 3] ⇒
next(l1) = l2 [l1 7→ l2, l2 7→ l3 + 2, l3 7→ 4] ⇒
next(l1) = l2 [l1 7→ l2, l2 7→ 4 + 2, l3 7→ 4] ⇒
next(l1) = l1 [l1 7→ l2, l2 7→ 6, l3 7→ 4] ⇒
next(l1) is undefined [l1 7→ 6, l2 7→ 6, l3 7→ 4]

In contrast the following step does not follow the efficient strategy:

[l1 7→ l2, l2 7→ l3 + 2, l3 7→ 1 + 3] ⇒
[l1 7→ l3 + 2, l2 7→ l3 + 2, l3 7→ 1 + 3] ⇒ . . .

The latter record eventually evaluates to the same one as the final record in
the efficient evaluation strategy sequence. However, in this evaluation sequence
the redex l3 + 2 was duplicated so it will have to be evaluated twice, possibly
duplicating evaluation of 1 + 3 as well.

Lemma 9 states a fairly obvious but important property of an efficient eval-
uation strategy. In order to prove it we define two notations of interactions
between evaluation steps that will be used in the proof of the lemma and prove
a supplemental result in Lemma 8.

Definition 13. Given an evaluation sequence D1
l1=⇒ D2

l2=⇒ D3, where li=⇒
evaluates a component bound to li (i = 1, 2), the steps D1

l1=⇒ D2 and D2
l2=⇒

D3 are called independent if l1 6= l2 and D1 6= E{l2} and D2 6= E{l1}.

Given an evaluation sequence D1
l=⇒ D2

l1,...lm
=⇒∗ D3, where the sequence

D2 ⇒∗ D3 evaluates components according to the ordered sequence of labels
l1, . . . lm (the labels l1, . . . lm are not required to be different), a step D1

l1=⇒ D2

is called independent from a sequence D2

l1,...lm
=⇒∗ D3 if l 6= li for all 1 ≤ i ≤ m,

D1 6= E{li} for all 1 ≤ i ≤ m, and none of the records in the sequence D2 ⇒∗

D3, except possibly D3, are of the form E{l}.

Lemma 8. The following properties hold for independent evaluation steps, as
defined in Definition 13:

15

1. Given two independent evaluation steps D1
l1=⇒ D2

l2=⇒ D3, there exists a
record D′

2 s.t. D1
l2=⇒ D′

2
l1=⇒ D3.

2. Given an evaluation sequence D1
l=⇒ D2

l1,...lm
=⇒∗ D3, where the first step is

independent from the subsequent sequence, there exists D′
2 s.t. D1

l1,...lm
=⇒∗

D′
2

l=⇒ D3, where the number and the order of labels in D1

l1,...lm
=⇒∗ D′

2 is
exactly the same as originally given.

Proof. The first part follows from an easy observation that the two evaluations
happen in two different components and do not affect each other. The second
part follows from the first one by induction on m by moving l=⇒ through the
sequence.

Lemma 9. If a record D has an evaluation normal form D′ with no components
bound to a black hole then any evaluation sequence that follows the efficient
evaluation strategy with any permutation L of all labels in L(D) reaches D′.

Proof. We will prove the claim by contradiction. Suppose D has an evaluation
normal form D′. Let L be some sequence of all labels in L(D). Suppose an
evaluation sequence D ⇒ D1 ⇒ D2 . . . follows the efficient strategy with respect
to L and does not reach D′, i.e. it cannot be continued as an efficient strategy.
Since D has a normal form, by Lemma 7 the sequence cannot diverge. Let D′′

denote the last record in the sequence.
By confluence of evaluation (Lemma 6) there exists an evaluation sequence

D′′ ⇒∗ D′. Since D′′ 6= D′ by our assumption, the sequence is not empty. By
our assumption D ⇒∗ D′′ ⇒∗ D′ does not follow the efficient strategy w.r.t. L
since we assumed that the efficient strategy stops before it reaches the normal
form. Let D′′ ⇒ D′

1 and let us denote the label of the component reduced in
this step as li. Since L contains all labels of D, it contains li.

We show that we can transform D ⇒∗ D′′ ⇒ D′
1 into an efficient strategy

sequence by moving li towards the beginning of the sequence until it gets to
its place according to L. The component bound to li is not fully evaluated in
D ⇒∗ D′′, therefore it cannot be used in a substitution in a given sequence
since efficient strategy allows substitution of fully evaluated components only.
To give intuition behind the procedure, consider D′′′ ⇒ D′′ ⇒ D′

1 There may
be two cases:

• The two steps are independent.

• D′′′ ⇒ D′′ reduces a component that gets substituted in the step D′′ ⇒
D′

1.

If the evaluation of li is independent from another step in the given efficient
evaluation sequence then by Lemma 8 the two reductions can be switched.
If there is a dependency then the two steps are considered a sequence and

16

togethe can be switched with the next (to the left) independent step by part 2
of Lemma 8. We formalize the transformation procedure below.

Let S be a subsequence of steps in a sequence D ⇒∗ D1
l=⇒ D2

l1,...,lm
=⇒∗

D3 ⇒∗ D′
1, where D ⇒∗ D1 is the yet unmodified part of the given efficient

strategy evaluation sequence. We assume that there are no substitutions of any
components reduced in S to the left of S, i.e. in the sequence D ⇒∗ D1

l=⇒ D2.
We initialize S to a single step D′′ li=⇒ D′

1. To mark S in an evaluation

sequence we will use a notation
S

=⇒∗. The transformation proceeds as follows:

1. If the sequence D ⇒∗ D1
l=⇒ D2

S

=⇒∗ D3 ⇒∗ D′
1 is an efficient evaluation

sequence w.r.t. L, then stop. If the sequence cannot be represented in the
given form because there are no more steps to the left of S, also stop.

2. If the sequence S is independent from D1
l=⇒ D2 (according to Defini-

tion 13) then change the sequence to D ⇒∗ D1

S′

=⇒∗ D′
2

l=⇒ D3 ⇒∗ D′
1

according to Lemma 8, where S′ reduces the same sequence of labels as

S. We set S = D1

S′

=⇒∗ D′
2. Note that it is still the case that there are no

substitutions of any components reduced in S to the left of S. We proceed
to step 1.

3. If the sequenceS is not independent from D1
l=⇒ D2 then the component

l is used in a substitution in one of the steps in
S

=⇒∗ (note that by the
initial assumptionit cannot be the case that D1

l=⇒ D2 uses any of the

components in S). Then we change S to D1
l=⇒ D2

S

=⇒∗ D3 and go to
step 1. Note that since D ⇒∗ D1

l=⇒ D2 follows the efficient strategy,
there may not be any substitutions of the component l to the left of S
since the component is not fully evaluated at this point.

The procedure terminates with an efficient evaluation strategy sequence w.r.t.
L since the sequence transformations guarantee that the no component is sub-
stituted before it is fully evaluated, and the evaluation of li is shifted to the left
until it is moved to its place according to the label ordering.

We can repeat the transformation procedure for every evaluation step in
D′′ ⇒∗ D′, moving the step that is the closest to the efficient strategy sequence
into that sequence. Thus we obtain an efficient evaluation sequence w.r.t. L
leading to the normal form which contradicts our initial assumption.

17

Chapter 4

Computational Soundness
of the Calculus

4.1 Definition of Computational Soundness

Computational soundness states that rewriting relation in the calculus preserves
the meaning of terms. A term’s meaning is given by its normal form w.r.t.
evaluation relation if such a normal form exists, otherwise the “meaning” is
divergence. The notion of Outcome in Definition 15 formalizes this idea. Some
normal forms may be syntactically different, but have the same “meaning”. The
classification function (Definition 14) groups terms based on their “meaning”.

4.1.1 Classification function.

In order to define a term’s meaning, we partition all terms into equivalence
classes. The function that assigns a class to a term is called a classification. Two
elements of the same class have the same meaning (however, they may be further
distinguished by supplying a context that uses them). For instance, at the term
level it is reasonable to make constants 2 and 3 be in different classes since
their meaning is clearly different. However, it is common to group all lambda
abstractions in the same class since a function by itself is not distinguishable
from any other function until it is applied.

It is possible to define different classification functions for the same calculus.
For instance, one may wish to distinguish between different types of errors by
further subdividing the error class. On the other hand, if one is only concerned
with proving termination equivalence then all normal forms may be placed into
one class1. A calculus may be computationally sound for one choice of classifi-
cation and unsound for another.

The classification function used in this work is defined in Definition 14. For
simplicity we use the same notation Cl for the classification function at both

1Records with at least one component bound to a black hole should be classified as diverging

18

levels of the calculus. This function is very similar to the one used in [7],
except for the inclusion of a black hole. We also do not have term-level classes
for variables: since record components contain closed terms, a label bound to
a variable would be considered an error. The function is well-defined on α-
equivalence classes both at the term and at the record level.

Definition 14 (Classification). The classification function Cl : TTerm → ST ,
where ST is a set of equivalence classes of terms, is defined as follows:

• Cl(M) = eval if M = E{R}, R is a redex. Such terms are called evaluable.

• Cl(c) = const(c), where const(c1) = const(c2) if and only if c1 = c2

• Cl(•) = •

• Cl(λx.N) = abs

• Cl(E{l}) = stuck(l), where stuck(l1) = stuck(l2) if and only if l1 = l2

• Cl(M) = error if M does not belong to any of the above categories

Cl : RTerm → SR, where SR is a set of equivalence classes of records, is defined
on records as follows:

• Cl([l1 7→ M1, . . . ln 7→ Mn]) = [l1 7→ Cl(M1), . . . ln 7→ Cl(Mn)] if Cl(Mi) 6=
• for all i s.t. 1 ≤ i ≤ n

• Cl([. . . , li 7→ •, . . .]) = ⊥

An equivalence class of a record D with no label bound to a black hole is an
unordered collection of labeled term-level classes corresponding to components
of D. For instance, Cl([l1 7→ λx.x, l2 7→ l1 @ 1]) = [l1 7→ abs, l2 7→ stuck(l1)].

Since a black hole represents an infinite substitution, the class of a record
with a black-hole-bound component is ⊥. Note that a record with a black hole in
a non-evaluation context does not necessarily diverge, and thus is not classified
as ⊥: consider [l 7→ (λx.1) @ •] ⇒ [l 7→ 1], the latter record is a normal form.

The following property is important for proving computational soundness:

Lemma 10 (Class Preservation). If D1 ↪→ D2 then Cl(D1) = Cl(D2).

Proof. Straigtforward, by cases of pairs classes and non-evaluation reduction
steps.

The given classification groups all abstractions in one class. However, this
does not mean that replacing an abstraction by any other one is a meaning
preserving transformation. One can always distinguish two semantically differ-
ent abstractions by considering them in a record with a term that applies the
abstraction to an argument. If a transformation is provably meaning preserving
then its results are the same no matter what other components appear in a
record. Since we can assume that any abstraction bound to a label is applied to
arbitrary terms in other components, transformations must preserve the actual
behavior of abstractions. [7] formalizes this notion via record contexts which we
do not present here due to lack of space.

19

4.1.2 Outcome and Computational Soundness.

Classification characterizes a term at a given moment, while outcome charac-
terizes the “ultimate fate” of the term - what happens to the term if it gets
evaluated as far as possible.

Definition 15 (Outcome). The outcome of a record D, denoted Outcome(D),
is Cl(D′) where D is the normal form of D w.r.t. ⇒ if D has a normal form
or a symbol ⊥ if evaluation of D diverges.

Lemmas 6 and 7 guarantee that the outcome to be well-defined since every
record either has a unique normal form or diverges on all evaluation paths (we
identify a label bound to a black hole with divergence). The outcome formalizes
the notion that the meaning of a term is the result of its evaluation.

Definition 16 (Meaning Preservation and Computational Soundness). A rela-
tion R is meaning preserving if MRN implies that Outcome(M) = Outcome(N).
A calculus is computationally sound if ↔ is meaning preserving.

By confluence and uniform normalization (Lemmas 6, 7) the relation ⇒ is
meaning preserving.

4.2 Proof Methods and Their Applicability

Historically various methods have been used for proving computational sound-
ness. A traditional method originating from Plotkin in [11] requires, in particu-
lar, confluence of the rewriting relation in the calculus. However, many recently
developed calculi model such inherently non-confluent features of programming
languages as mutually dependent components. The repertoire of proof methods
has been expanded to relax requirements on the calculus. In this section we
review some of these proof methods and discuss why they are not applicable to
our calculus.

4.2.1 Failure of Confluence and Standardization Proof
Method

The traditional method for computational soundness proofs has three require-
ments: confluence of the rewriting relation, standardization (a property that
relates the rewriting relation and the evaluation relation), and the class preser-
vation property defined in Lemma 10 (see [7] for detailed discussion). However,
in our system → is non-confluent. The non-confluence example below is based
on that in [3]. It also appears in the call-by-value version of our calculus de-
scribed in [7, 10].

Example 1 (Non-confluence of →). Consider a record [l1 7→ λx.l2, l2 7→ λy.l1].
It has two non-evaluation substitution redexes. By choosing each of the two
redexes we obtain these two records: [l1 7→ λx.λy.l1, l2 7→ λy.l1] and [l1 7→

20

D1
∗+3___ ___

_�

��

D4_�

∗��
�
�
� D1

∗+3
_�

��

D2
∗+3___ ___ D4_�

∗��
�
�
�

D2
∗+3 D3 D3

∗+3_______ _______ D5

Figure 4.1: Lift and Project properties.

λx.l2, l2 7→ λy.λx.l2]. The only reductions that can originate from these records
are substitutions. No matter what substitutions we perform on the records, they
cannot be reduced to a common one since in the first one both components always
reference l1, and in the second record they reference l2.

It is important to observe that both reductions in this example are non-
evaluation steps. In section 3 we showed a similar example, but with two evalu-
ation step. Then both records evaluate to [l1 7→ •, l2 7→ •], preserving confluence
of ⇒.

4.2.2 Failure of Lift and Project Method

In [7, 10] we have proposed a novel method for proving computational soundness
and applied it to a call-by-value calculus of records. The call-by-value nature
of the substitution disallows substituting non-evaluated components into other
components.

In [7, 10] we use an approach based on three properties of the calculus: the
lift, and project properties defined in Definition 17, and the class preservation
property in Section 4.1 to prove computational soundness of a call-by-value
calculus of recursively-scoped records. The project property “projects” a given
evaluation sequence down, and the lift property “lifts” a given sequence up,
according to the diagram layout in Figure 4.12.

Definition 17 (Lift and Project). A calculus has the lift property if, given
D1 ↪→ D2 ⇒∗ D3, there exists D4 s.t. D1 ⇒∗ D4 ↪→∗ D3. A calculus has
the project property if, given D1 ⇒∗ D2 and D1 ↪→ D3, there exist D4, D5 s.t.
D2 ⇒∗ D4 ↪→∗ D5 and D3 ⇒∗ D5.

The lift and project properties hold in the call-by-value system. However,
despite the fact that the current system is very similar to the one considered
in [7, 10], the call-by-name nature of substitution breaks the lift and the project
properties.

Example 2 (Lack of Lift and Project Properties). The following example shows
that the project property fails in our calculus: given the term reduction on top

2In diagrams double arrows represent ⇒, single arrows →, arrows with a hook are ↪→.
Solid arrows are the given relations, dashed arrows are those claimed to exist by the property.
See Definition 8 for closure notations.

21

and the non-evaluation substitution, we cannot complete the diagram. The sub-
stitution (a non-evaluation step) has duplicated an evaluation term redex and
thus requires a non-evaluation arrow to point “up” to complete the diagram,
which contradicts the project property.

[l1 7→ 2 + 3, l2 7→ λx.l1] +3
_�

[l1 7→ 5, l2 7→ λx.l1]
_�

��

��

[l1 7→ 5, l2 7→ λx.5]

[l1 7→ 2 + 3, l2 7→ λx.2 + 3] +3 [l1 7→ 5, l2 7→ λx.2 + 3]
?�

OO

This is also a counterexample to lift if we assume that we are given the sequence
[l1 7→ 2 + 3, l2 7→ λx.l1] ↪→ [l1 7→ 2 + 3, l2 7→ λx.2 + 3] ⇒ [l1 7→ 5, l2 7→ λx.2 + 3]
as a premise, with the goal of completing the lift diagram.

4.2.3 Applicability of Other Diagram-Based Methods.

The lift and project method has been extended and generalized in [14]. While
it is possible that a form of the approach presented there, known as lift/project
when terminating (or LPT), is applicable, we have not been able to construct
such a proof.

A black hole, which is technically a normal form, may require a modification
of the LPT approach. In our system a non-evaluation step may convert a record
with a component evaluating to black hole to a diverging record, as shown below.
Diagram-based methods generally do not equate diverging terms with normal
forms. Note that the outcome of both records is ⊥ so the meaning is preserved.

[l1 7→ l2 @ 2, l2 7→ λx.l1] ⇒ [l1 7→ (λx.l1) @ 2, l2 7→ λx.l1] ⇒
[l1 7→ l1, l2 7→ λx.l1] ⇒∗ [l1 7→ •, l2 7→ λx.l1]
[l1 7→ l2 @ 2, l2 7→ λx.l2 @ 2] ⇒ [l1 7→ (λx.l2 @ 2) @ 2, l2 7→ λx.l2 @ 2] ⇒
[l1 7→ l2 @ 2, l2 7→ λx.l2 @ 2] ⇒ . . .

4.3 Proof of Meaning Preservation of the Term
Reduction

Lemma 11. D1
T
↪→ D2 implies Outcome(D1) = Outcome(D2).

The meaning preservation property of a term reduction can be proven using
the lift and project approach. The proof is similar to that for the call-by-value
calculus in [7]. Below we outline the proof. The details can be easily checked.

A redex in a term M is any subterm such that M = C{R} and C{R}matches
one of the calculus reduction rules. Given a reduction M → M ′ that reduces

22

a redex R1 and another redex R2 in M , a residual of R2 is any redex in M ′

that results from preserving, moving, or duplicating R2. Note that R2 may
be somewhat transformed if the reduction copies an expression into one of free
variables inside R2. It is also possible that R2 has no residuals (for instance, if
it appeared inside an argument of a λ-abstraction that is not used in the body
of the abstraction) See [5] for more details on the definition.

The proof uses the machinery of marked redexes and residuals. In order

to prove that a term reduction D1
T
↪→ D2 preserves the meaning of a record,

we mark the redex reduced by this reduction in D1. The method of marking
is unimportant. In this presentation we show marked redexes by underlining.
After a reduction all residuals of marked redexes are still marked. A subterm
that results from reducing a redex is not marked.

We use M̃, Ñ , etc. to denote terms in which some term redexes are marked
and D̃, etc. to denote records with marked term redexes. We say that a term
M is an erasure of a marked term M̃ if M is obtained from M by removing all
markings of redexes.

Given D1
T
↪→ D2, we start by marking the redex reduced by this reduction

in D1. Let D̃1 be the result of such marking. For instance,

D̃1 = [l1 7→ ((λx.x) @ (λy.y)) @ 2, l2 7→ 3 + l1] ↪→
D2 = [l1 7→ (λy.y) @ 2, l2 7→ 3 + l1]

(here D2 does not have any marked redexes, and this is not marked with a tilde)
When the first record gets evaluated, the marked redex may get duplicated,

either within the same component, or, as illustrated below, it can be copied into
a different component:

D̃1 = [l1 7→ ((λx.x) @ (λy.y)) @ 2, l2 7→ 3 + l1] ⇒
[l1 7→ ((λx.x) @ (λy.y)) @ 2, l2 7→ 3 + ((λx.x) @ (λy.y)) @ 2]

In the above example the original redex has two residuals in the resulting record.
In general, an evaluation sequence starting at D̃1 may produce multiple copies of
the marked redex in multiple components and marked redexes may be contained
within other marked redexes. Since no redexes are marked in D2, its evaluation
does not produce any marked redexes either.

We use the well-known (see, e.g., [5]) notion of developments:

Definition 18 (Developments). A reduction step D̃ → D̃′ is called a devel-
opment step and is denoted by →

dev
if it reduces a marked redex. A sequence of

development steps is called a development and is denoted by →∗
dev

. We extend

these notations to the evaluation and non-evaluation relations in a straightfor-
ward way.

A development D̃ →∗
dev

D̃′ is called a complete development when D̃′ does not

have any marked redexes. We denote a complete development by →∗
cd

.

23

We use →, ⇒, etc. to denote the respective relations on marked terms.
These relations may or may not reduce a marked redex, thus they may or may
not be development steps. In other words, on marked terms →

dev
⊂→, ⇒

dev
⊂⇒,

etc.
The proof of Lemma 13 (lift and project properties of the calculus) uses the

properties of developments given in Lemma 12.

Lemma 12. The following properties of developments hold:

1. Developments are finite, i.e. given a record D̃, there is no infinite sequence
of →

dev
steps originating at D̃. More precisely, developments are bounded,

i.e. for any record D̃ there exists a number n such that all sequences →∗
dev

starting at D̃ are no longer than n steps.

2. Developments are confluent, i.e. if D̃ →∗
dev

D̃1 and D̃ →∗
dev

D̃2 then there

exists D̃3 such that D̃1 →∗
dev

D̃3 and D̃2 →∗
dev

D̃3.

3. Elementary Lift: Given D̃1 ↪→
dev

D̃2 and D̃2 ⇒ D̃′
2, there exits D̃1 such

that D̃1 ⇒ D̃′
1 and D̃′

1 →∗
dev

D̃′
2.

4. Elementary Project: Given D̃1 ↪→
dev

D̃2 and D̃1 ⇒ D̃′
1, there exists D̃′

2

such that D̃2 ⇒ D̃′
2 and D̃′

1 →∗
dev

D̃′
2.

5. Standardization of Developments: given D̃1 →∗
dev

D̃2, there exists D̃3

s.t. D̃1 ⇒∗
dev

D̃3 ↪→∗
dev

D̃2.

Standardization of developments and the two elementary diagrams are illus-
trated in figure 4.2.

Proof. All of the above properties can be proven first for the term calculus, and
then reduction sequences for individual components can be combined to obtain
the corresponding properties for records.

Boundedness of developments is proven for terms analogously to the proof
of finiteness of developments in [5]. The bound of developments in records is
computed as the sum of bounds for each record component since developments
of term redexes involve only term reductions, and term reductions in different
components are independent.

The proof of confluence of developments is straightforward.
Properties 3 and 4 are proven by cases of all possible pairs of the given

evaluation and non-evaluation development steps. Note that the starting term
D̃1 may have more than one marked redex.

Standardization of developments is proven by showing that D̃1 ↪→
dev

D̃2 ⇒
dev

D̃3

implies that there exists D̃4 such that D̃1 ⇒
dev

D̃4 →∗
dev

D̃3, i.e the evaluation step

24

D̃1_�

dev
��

+3___ ___ D̃′
1

∗
dev
���
�
� D̃1_�

dev
��

+3 D̃′
1

∗
dev
���
�
� D̃3 o�

∗dev ��?
?

?
?

D̃2
+3 D̃′

2 D̃2
+3___ ___ D̃′

2 D̃1
∗

dev
//

∗

dev

;C�
�

�
�

�
�

�
�

D̃2

Figure 4.2: Elementary Lift and Project for Developments and Standardization
of Developments.

is “pushed forward”. Boundedness of developments implies that the process of
“pushing forward” evaluation steps terminates.

Evaluation of a transformed record parallels the evaluation of of the original
one. More specifically, we state and prove the following two claims.

Lemma 13. Assume that the only redex marked in D̃′
1 is a non-evaluation

redex and D̃′
1 ↪→ D2 reduces that redex (note that then the reduction can also

be written as D̃′
1 ↪→

cd
D2 since it reduces a marked redex and the resulting record

does not have any marked redexes in it). Then the following two properties hold:

1. Lift. If D2 ⇒∗ D′
2 then there exists D̃′

1 s.t. D̃1 ⇒∗ D̃′
1 and D̃′

1 ↪→∗
cd

D′
2.

2. Project. If D̃1 ⇒∗ D̃′
1 then there exist D̃′′

1 and D′
2 s.t. D̃′

1 ⇒∗ D̃′′
1 ,

D2 ⇒∗ D′
2, and D̃′′

1 ↪→∗
cd

D′
2.

Note that we do not put tilde on D2 and D′
2 since they do not have any

marked redexes.
Figure 4.3 illustrates the structure of the proof of lift. The proof is by in-

duction on the number of steps in the evaluation sequence D2 ⇒∗ D′
2. The

inductive hypothesis guarantees the existence of the complete development se-
quence D̃′′′

1 ↪→∗
dev

D′′
2 . Repeated application of the elementary lift property in

Lemma 12.3 to each step of D̃′′′
1 ↪→∗

cd
D′′

2 allows us to “lift” the step D′′′
2 ⇒ D′

2

all the way to D̃′′′
1 ⇒ D̃′′′′

1 . The standardization of developments property in
Lemma 12.5 allows us to rewrite the sequence D̃′′′′

1 ↪→∗
cd

D′
2 as a sequence of

evaluation development steps followed by a sequence of non-evaluation develop-
ment steps. The erasure of all markings results in the desired lift property for
a term redex in the calculus of records.

The proof of the project property is illustrated in Figure 4.4 and is similar
to that of lift, except the fact that it uses the elementary project property in
Lemma 12.4 to “project” the evaluation step D̃′′′

1 ⇒ D̃′
1 down to D′′

2 ⇒ D′
2 in

place of analogous use of the elementary lift diagram 12.3 in the lift property.
Again, by erasing all the markings we get the desired project property for a
non-evaluation term reduction.

25

D̃1_�

cd

��

∗+3_______ _______ D̃′′′
1

+3____________ ____________
_�

∗

cd

���
�
�
�
�
�
�

D̃′′′′
1

∗
dev
��
�
�
�

�
�
�

IH Lemma 12.3,5 D̃′′
1_�

∗
cd
���
�
�

D2
∗+3 D′′

2
+3 D′

2

Figure 4.3: Proof of Lift Property of Developments of Term Redexes

D̃1_�

cd

��

∗+3 D̃′′′
1

+3
_�

∗

cd

���
�
�
�
�
�
�

D̃′
1

∗
dev
��
�
�
�

�
�
�

IH Lemma 12.4,5 D̃′′
1_�

∗
cd
���
�
�

D2
∗+3_______ _______ D′′

2
+3____________ ____________ D′

2

Figure 4.4: Proof of Project Property of Developments of Term Redexes

Since non-evaluation term reductions satisfy lift and project diagrams, such
reductions are meaning-preserving, as proven in [10] and [7].

4.4 Meaning Preservation of Substitution

We show that substitution preserves the outcome of a record. Our proof is
inductive on the number of steps in the evaluation sequence ultimately leading
to the record’s ⇒-normal form (if there is one). One of the key ideas of the
proof is to use the efficient evaluation strategy (see Definition 12) to guarantee
that each component is evaluated only once, the first time it is needed. Thus
all of the record components that reference a label will use a substitution-free
normal form of the component bound to the label if such a normal form exists,
and no copy of the component would require any further evaluation. If there
is no such normal form then the evaluation of the record diverges or one of the
components becomes a black hole. We show that a substitution step preserves
successful (i.e. black-hole free) termination of record evaluation.

4.4.1 Multi-hole Contexts and Similarity.

As a necessary formalism for the computational soundness proof we define multi-
hole contexts, i.e. “terms” with several holes that can be filled in with subterms.

26

A zero-hole context is a term with no holes at all, i.e. just a regular term. Note
that the one-hole context defined in Definition 1 is a partial case of a multi-hole
context. However, it is more convenient to define it separately.

Definition 19 (Multi-hole contexts). A multi-hole context M is inductively
defined as

M ::= � | M | λx.M | M + M | M @ M
A multi-hole context is an n-hole context if the total number of holes in it is n.
Note that n ≥ 0.

An n-hole context M is called a non-evaluation multi-hole context if for any
0 ≤ i ≤ n and for any n − 1 terms M1, . . . Mi−1,Mi+1, . . . Mn the one-hole
context M{M1, . . . ,Mi−1,�,Mi+1, . . . ,Mn} is a non-evaluation context. Such
contexts are denoted by MN.

A multi-hole context M is an evaluation context in i-th position if for every
M1, . . . ,Mi−1,Mi+1, . . . Mn M{M1, . . . ,Mi−1,�,Mi+1, . . . ,Mn} is an evalua-
tion context. We denote an evaluation multi-hole context by ME. For evaluation
multi-hole contexts in the further proofs we assume, without loss of genrality,
that the evaluation hole is always in the first hole position.

As an example, consider a 3-hole context (λx.�) @ (�+�). If we fill it
with terms 5, (λx.x) @ 1, and 2, we get the term (λx.5) @ (((λx.x) @ 1) + 2).
The context is an evaluation context in the second position since no matter
what terms fill the first and the third holes, the resulting context is an evalu-
ation context. The following λ-abstraction is a non-evaluation 2-hole context:
λx.� @ �.

Lemma 14 (Multi-hole Context Cases). Given a multi-hole context M with
n ≥ 1, it is either a non-evaluation context or an evaluation context in exactly
one position i.

Proof. One may observe that a multi-hole context (for n > 0) is either a non-
evaluation context or an evaluation context in exactly one position. Consider
representation of a context as a tree and consider the path from the root down
the tree that follows the structure of an evaluation context in Definition 1.
Specifically, the path does not descend under a lambda and always chooses the
left subterm of an application or an operation, unless the left subterm of an
application is a lambda abstraction (then the right subtree is chosen) or the left
subtree of an operation is a constant (also the right subtree is chosen). As the
result of this traversal exactly one of the following two cases takes place:

1. The constructed path reaches a context hole. In this case no matter what
terms fill in the other holes in the context, the resulting context is an
evaluation context, i.e. the multi-hole context is an evaluation context in
the position corresponding to the encountered hole.

2. The constructed path does not encounter a context hole. Since the path
follows definition of an evaluation context, no hole in the multi-hole con-
text forms an evaluation context, regardless of what terms the other con-
texts are filled with.

27

We use the notation M ≡ M′ to denote the fact that M and M′ are identical
contexts. Note that since a context may have bound variables appearing in the
terms that fill it, it does not make sense to extend the notion of α-renaming
to contexts. However, when we write M{M1, . . . ,Mn} = M′{M ′

1, . . . ,M
′
n},

we assume that the resulting terms belong to the same α-equivalence class.
Note that in this case it is possible to apply a sequence of alpha-renamings
to M{M1, . . . ,Mn} to convert it to M′′{M ′′

1 , . . . ,M ′′
n} so that M′ ≡ M′′ and

M ′
i ≡ M ′′

i for all 1 ≤ i ≤ n (this property follows directly from definitions of
=α and ≡).

The following lemma formalizes the fact that terms in non-evaluation posi-
tions do not affect the class.

Lemma 15. If M1 = MN{N1, . . . , Nn} and M2 = MN{N ′
1, . . . , N

′
n} then Cl(M1) =

Cl(M2).

Proof. By cases of classification and by induction on the structure of an evalu-
ation context.

Definition 20. A record D1 is called (M1,M2)-similar to a record D2 (denoted
D1 ∼M1

M2
D2) if there exist multi-hole contexts M1, . . . , Mn s.t.

D1 = [l1 7→ M1{M1, . . . ,M1}, . . . , ln 7→ Mn{M1, . . . ,M1}],
D2 = [l1 7→ M1{M2, . . . ,M2}, . . . , ln 7→ Mn{M2, . . . ,M2}].

Note that if D1 ∼M1
M2

D2 then D2 ∼M2
M1

D1.

Definition 20 simply means that D2 is the result of replacing some occur-
rences of M1 in D1 by M2.

Similar to the convention on equality of contexts filled with terms, we assume
that the representatives of the α-equivalence classes of all components in the two
records are chosen in such a way that all Mi in D1 are syntactically equivalent
to the corresponding Mi in D2. We also assume that M1 and M2 are closed
terms, i.e. FV (M1) = FV (M2) = ∅. Since the notion of ∼M1

M2
will be used

only in cases when M1 is a label and M2 is a component bound to that label,
the assumption holds in cases considered in this presentation. In addition, we
assume that all copies of M1 in D1 are syntactically equivalent to each other
and so are all copies of M2 in D2.

4.4.2 The Proof of Meaning Preservation of a Substitution
Step.

The following lemma states the key property used in meaning preservation proof
for a substitution step.

Lemma 16. Let D1 = [l 7→ M, l′ 7→ N{l}, . . .] S
↪→ [l 7→ M, l′ 7→ N{M}, . . .] =

D2 and D1 ⇒∗ D′
1 and let L � l, l′, l1, . . . , ln, where l1 . . . ln is a sequence of

labels in L(D1), n ≥ 0, and l 6= li, l′ 6= li for all 1 ≤ i ≤ n. Then

28

D1_�

��

∗+3 D′
1

∼l
M�O

�O
�O

D1_�

��

∗+3_______ _______ D′
1

∼l
M�O

�O
�O

D2
∗+3___ ___ D′

2 D2
∗+3 D′

2
∗+3___ ___ D′′

2

Figure 4.5: The claims of Lemma 16.

• If D1

L
=⇒∗

e
D′

1 then there exists D′
2 s.t. D2

L
=⇒∗

e
D′

2, D′
1 ∼l

M D′
2, and

Outcome(D′
1) = ⊥ if and only if Outcome(D′

2) = ⊥.

• If D2

L
=⇒∗

e
D′

2 then there exist D′
1, D

′′
2 s.t. D1

L
=⇒∗

e
D′

1 and D′
2

l′′

=⇒∗
e

D′′
2 ,

D′′
2 ∼l

M D′
1, and Outcome(D′

1) = ⊥ if and only if Outcome(D′
2) = ⊥.

where l′′ is the last label in L. Note that it may be the case that l = l′.

Note that there is a slight asymmetry between the two cases: in the second
case additional evaluation steps on the D′

2 may be needed. This is because D′
2

may be in the process of evaluating M where D′
1 may have a single substitution

step for l. Thus extra steps in D′
2 are needed to finish evaluating M , and the

resulting records D′
1 and D′′

2 satisfy the conditions of the lemma.
Before proving Lemma 16 we prove several properties used in the proof.

Lemma 17. Let M be a closed term and let D1 = [l1 7→ E{M}, l2 7→ M2, . . . , ln 7→

Mn] and suppose D
l1

=⇒∗
e

[l1 7→ E{M ′}, l2 7→ M ′
2, . . . , ln 7→ M ′

n] = D2 so that

no further evaluation steps within M ′ (without modifying E) are possible. We
also assume that E{M ′} 6= E′{•} and E{M ′} 6= E′{l1} for any E′. Suppose
D2 =⇒∗

e
D3 s.t. l 7→ E1{M} ∈ D3, i.e. a term equal to M needs to be evaluated

in D3. Then there exists D4 s.t. D3 =⇒∗
e

D4 and l 7→ E1{M ′} ∈ D4, i.e. M

evaluates to M ′.

Proof. The same term redexes in M are evaluated the same way in all copies.
Thus we only need to show that substitution always substitutes the same results
and it is not possible to encounter a black hole in evaluation of such copies.

The efficient evaluation strategy requires that all components that are sub-
stituted into M are fully evaluated. Thus when these components are needed
again in subsequent evaluations of a copy of M , exactly the same terms will be
substituted.

Now we show that none of the substitutions form a cycle that produces a
black hole. Suppose such a cycle is possible, i.e. when evaluating a copy of M
in the component bound to l we obtain a cycle. For simplicity we consider a
cycle of length 2; longer cycles or cycles of length 1 are handled similarily. A
cycle occurs when l is of the form E{l′} and l′ is of the form E{l}. This means
that evaluation of M requires l′. However, then l′ is also needed for evaluation

29

of the original M in l1, and that evaluation needs of l′′, so a cycle is encountered
in evaluation of M , but we assumed that evaluation of M does not produce a
cycle.

Thus a cycle is impossible, and a copy of M successfully evaluates to M ′.

Lemma 18. If D1 ∼l
M D2 and

D1 = [l1 7→ MN1{l, . . . , l}, . . . , ln 7→ MNn{l, . . . , l}],
D2 = [l1 7→ MN1{M, . . . , M}, . . . , ln 7→ MNn{M, . . . , M}]

then next(D1, l) = next(D2, l) for every l ∈ L(D).

Proof. Terms in non-evaluation contexts do not affect next(D, l) since the next
component to be evaluated is determined only by terms in evaluation contexts.

The following lemma serves as a basis for induction on the number of steps
in a given evaluation sequence.

Lemma 19. Suppose D ∼l
M D′, l′ is a label in D and D′ such that next(D, l′) =

l′, next(D′, l′) = l′, the component bound to a label l′ is of the form MN{l, . . . , l}
in D, and MN{M, . . . , M} in D′. Let l′=⇒

e
denote the first step in the efficient

evaluation strategy that starts at l′. Then D
l′=⇒
e

D1, D′ l′=⇒
e

D′
1, and D1 ∼l

M

D′
1.

Proof. Since next(D, l′) 6= • (and the same for D′), the evaluation step is not a
record-level rule (B1) or (B2). We have two cases:

1. The evaluation step is by rule (TE). Note that the context containing the
terms that differ in the two records (i.e. the terms l in D and M in D′)
is a non-evaluation context. Thus M is not the term that gets evaluated,
nor is the redex contained within any of the copies of M .

Let M1 be a context that shows positions of all copies of x that are bound
by λx and all the occurrences of l in D and, respectively, M in D′ that
participate in the similarity D ∼l

M D′ that appear under the λx. Without
loss of generality we show all copies of x preceding all copies of l (or,
respectively, of M).

We have the following evaluation step (M1, M2 are multi-hole contexts,
possibly empty, and not necessarily non-evaluation ones):

D = [l′ 7→ E{(λx.M1{x, . . . , x, l, . . . , l}) @ M2{l, . . . , l}}, . . .] ⇒
D1 = [l′ 7→ E{M1{M2{l, . . . , l}, . . . , M2{l, . . . , l}, l, . . . , l}}, . . .]

D′ = [l′ 7→ E{(λx.M1{x, . . . , x, M, . . . ,M}) @ M2{M, . . . , M}}, . . .] ⇒
D′

1 = [l′ 7→ E{M1{M2{M, . . . , M}, . . . , M2{M, . . . , M},M, . . . ,M}}, . . .]

We observe that D1 ∼l
M D′

1.

30

2. The evaluation step is by rule (SE), i.e. it is a substitution from another
component. The label of the component copied by the substitution is
denoted by l1. By the inductive hypothesis if l1 7→ M1{l, . . . , l} ∈ D
then l1 7→ M1{M, . . . , M} ∈ D1. Recall the notation ME for a multi-
hole context whose first position is an evaluation context regardless of the
terms filling the other holes (see Definition 19). Below is the evaluation
step (on both records):

D = [l′ 7→ ME{l1, l, . . . , l}, l1 7→ M1{l, . . . , l}, . . .] ⇒
D1 = [l′ 7→ ME{M1{l, . . . , l}, l, . . . , l}, l1 7→ M1{l, . . . , l}, . . .]

D′ = [l′ 7→ ME{l1,M, . . . ,M}, l1 7→ M1{M, . . . , M}, . . .] ⇒
D′

1 = [l′ 7→ ME{M1{M, . . . , M},M, . . . ,M}, l1 7→ M1{M, . . . , M}, . . .]

Again we observe that D1 ∼l
M D′

1.

4.4.3 Proof of Lemma 16.

We assume the conditions and notations as in the statement of the lemma:
D1 = [l 7→ M, l′ 7→ N{l}, . . .] S

↪→ [l 7→ M, l′ 7→ N{M}, . . .] = D2 and D1 ⇒∗ D′
1

and let L � l, l′, l1, . . . , ln, where l1 . . . ln is any sequence of labels in L(D1)
other than l and l′.

Part 1: l 6= l′. Suppose D1

L
=⇒∗

e
D′

1, l1 is the first label in L such

that next(D1, l1) is not undefined, and next(D1, l1) = next(D2, l1). We prove

by induction that there exists D′
2 such that D2

L
=⇒∗

e
D′

2, D′
1 ∼l

M D′
2 and that

Outcome(D′
1) = ⊥ if and only if Outcome(D′

2) = ⊥.
The evaluation sequence starts with the component bound to l which is the

same in the two records. Until the modified component (i.e. the one bound
to l′) is needed in the evaluation sequence, the only difference between the two
records is in that component.

When then component bound to l′ is needed by l or is required by the
sequence L, it gets evaluated. If the evaluation results in a term other than
a black hole, this term may be substituted into other components. When this
happens, the two records may differ in multiple components.

Thus in our proof we distinguish the following stages in an evaluation (as-
suming that none of the components is bound to a black hole):

• Stage I: the component bound to l′ is not needed yet by any components
that are being evaluated so far,

• Stage II: the component bound to l′ is being evaluated,

• Stage III: the component bound to l′ is completely evaluated.

31

l′ is needed by l: · I ∗+3

l

##
· II ∗+3 · III ∗+3 · III ∗+3

l1,...,ln

��
·

l′ is not needed by l: · I ∗+3

l

· II ∗+3

l′

· III ∗+3

l1,...,ln

·

Figure 4.6: Stages of efficient evaluation with L = l, l′, l1, . . . , ln, as defined in
Part 1 of proof of Lemma 16

There are two cases, shown in Figure 4.6: when l′ is needed during the evaluation
of l (the top diagram) and when it is not needed for evaluating l (the bottom
diagram). The arcs on top show the label in L that is currently being evaluated.

Base Case. It is easy to observe that D1 ∼l
M D2.

Inductive Step. Suppose that the desired property holds after an n-step eval-

uation sequence D1

L
=⇒∗

e
D′

1, i.e. there exists D′
2 s.t. D2

L
=⇒∗

e
D′

2 and D′
1 ∼l

M

D′
2. Let D′

1 ⇒ D′′
1 be the next step in the efficient evaluation. Recall that the

efficient evaluation sequence follows the sequence of labels L � l, l′, l1, . . . , ln.
By convention labels li appearing anywhere in the proof are assumed to be
different from l and l′.

We have the following cases (see Figure 4.6 for illustration of cases):

1. Stage I, i.e. the stage when l is being evaluated and l′ is not needed yet.
Thus D′

1 and D′
2 are the same except l′ 7→ N{l} ∈ D′

1 and l′ 7→ N{M} ∈
D′

2, and by Lemma 18 next(D′
1, l) = next(D′

2, l).

We have the following cases:

(a) next(D′
1, l) = l. Let D′

2 ⇒ D′′
2 by evaluating the component bound

to l. Let Ml denote the term bound to l. Note that such terms are
identical in D′

1 and D′
2. There are four possibilities:

• Ml is evaluatable,
• Ml = E{l1}, where l1 6= l′, l1 6= l,
• Ml = E{l} (or, equivalently, Ml = E{•}), and
• Ml = E{l′}.

In the first two cases the term bound to l remains identical in D′′
1 and

D′′
2 , so the only difference between the two terms is in the component

bound to l′. Clearly D′′
1 ∼l

M D′′
2 . In the third case the component

evaluates to • in both records and Outcome(D1) = Outcome(D2) =
⊥.
The last case is when Ml = E{l′}. Since next(D′

1, l) = l, the
term N{l} bound to l′ in D′

1 is fully evaluated. By Lemma 15
Cl(N{l}) = Cl(N{M}), so the term N{M} bound to l′ in D′

2 also is

32

fully evaluated. This case corresponds to the top part of Figure 4.6
since evaluation of l needs l′, but Stage II is trivial (i.e. it does not
contain any evaluation steps) since the term bound to l′ is completely
evaluated to begin with.
We have:

D′
1 = [l 7→ E{l′}, l′ 7→ N{l}, . . .] ⇒

[l 7→ E{N{l}}, l′ 7→ N{l}, . . .] = D′′
1

D′
2 = [l 7→ E{l′}, l′ 7→ N{M}, . . .] ⇒

[l 7→ E{N{M}}, l′ 7→ N{M}, . . .] = D′′
2

It is easy to observe that D′′
1 ∼l

M D′′
2 . Note that in this case the

evaluation sequence enters stage III.
(b) next(D′

1, l) = •. By Lemma 18 next(D′
2, l) = •, so both records

diverge.
(c) next(D′

1, l) = l1. Since l′ was not needed yet, the term bound to l1 is
the same in the two records. After the evaluation on the component
l1 the two resulting records also differ only in l′ component.

(d) next(D′
1, l) = l′, i.e. l′ is needed for evaluation of l. The evaluation

sequence enters Stage II on the top diagram in Figure 4.6. This
situation is considered in Case 3.

2. Stage II (evaluation of l′) in the case when l is fully evaluated and l′

was not needed during evaluation of l. This corresponds to the bottom
diagram in Figure 4.6.
All components other than the one bound to l′ are identical in the two
records since the component bound to l′ must be fully evaluated before it
can be copied into other components, but it has not been evaluated yet.
Below are the corresponding cases:

(a) next(D′
1, l

′) = l′, l does not appear in an evaluation context in the
component bound to l′. In this case all copies of l in D′

1 and all
corresponding copies of M in D′

2 appear in a non-evaluation context
in the component bound to l′. By Lemma 19 in both cases D′′

1 ∼l
M

D′′
2 .

(b) next(D′
1, l

′) = l′, l appears in an evaluation context in the component
bound to l′. In this case D′

2 may have l or M in the corresponding
position. The former case is trivial (both records perform a substitu-
tion of l which is fully evaluated). In the latter case by Lemma 17 M
evaluates to the same normal form as it did in the original evaluation
of l, i.e. to the same term that gets substituted into l′ in D′

1. The
corresponding sequences are shown below:

D′
1 ⇒∗ [l 7→ M ′, l′ 7→ ME{l, . . . , l}, . . .]

⇒ [l 7→ M ′, l′ 7→ ME{M ′, l, . . . , l}, . . .] = D′′
1

D′
2 ⇒∗ [l 7→ M ′, l′ 7→ ME{M, . . . , M}, . . .]

⇒∗ [l 7→ M ′, l′ 7→ ME{M ′,M, . . . ,M}, . . .] = D′′
2

33

Thus D′′
1 ∼l

M D′′
2 .

(c) next(D′
1, l

′) = l′′ 6= l′, l′′ 6= l. Since all the components in the two
record other than the one bound to l′ are identical, the case is trivial.

(d) next(D′
1, l

′) = •. In this case the component bound to l′ either
is of the form E{l′} or it depends on itself or on a black hole via
a chain components of the form E{li}. By Lemma 15 this means
that the corresponding component in D′

2 also either depends on itself
directly or depends on a black hole or depends on itself via a chain of
dependencies (note that components not bound to l or l′ are identical
in the two records).

(e) next(D′
1, l

′) = l. This case is impossible since next(D′
1, l) is unde-

fined.

(f) next(D′
1, l

′) is undefined. This means that the component bound to
l′ is already completely evaluated. Then no l appear in an evaluation
context, and by Lemma 18 next(D′

2, l
′) is also undefined. In this case

by the efficient strategy the next component to be evaluated is the
one bound to next(D′

1, l1) if it is defined and not a black hole. If
next(D′

1, l1) is undefined as well then the evaluation of D′
1 moves to

next(D′
1, l2), etc. This corresponds to Stage III in Figure 4.6. We

consider this situation in Case 5.

3. Stage II (l′ is being evaluated) in the case when l′ is needed by l, i.e.
the case of the top diagram in Figure 4.6. Since l′ is needed by l, the
component l is of the form E{l′} in both records or there is a chain of
component dependencies of the form E{li} from l to l′.

Since the term bound to l′ is currently being evaluated, it is of the form
M{l, . . . , l} in D′

1 and of the form M{M, . . . , M} in D′
2. According to the

efficient evaluation strategy, no component can copy the term bound to
l′ until the term is completely evaluated. Thus all the other components
are still identical in the two records during this stage.

We have the following cases:

(a) next(D′
1, l) = next(D′

2, l) = l′ and the multi-hole context M is a non-
evaluation context. In this case the next evaluation step is performed
on the component l′. By Lemma 19 after this step the term bound
to l′ is of the form M′{l, . . . , l} in D′′

1 and of the form M′{M, . . . , M}
in D′′

2 . All the other components are identical in D′′
1 and D′′

2 , thus
D′′

1 ∼l
M D′′

2 .

(b) The multi-hole context M = ME is an evaluation context for one of
the holes. convention that, without loss of generality, the first hole
in an evaluation multi-hole context is assumed to be the evaluation
position). Then l′ 7→ ME{l, . . . , l} ∈ D′

1 and l′ 7→ ME{M, . . . , M} ∈
D′

2 We show that in this case Outcome(D′
1) = Outcome(D′

2) = ⊥.

34

Substituting the component into l in D′
1 (possibly through a depen-

dency chain), we get a black hole in the component bound to l since
E{ME{�, . . . , l}} is an evaluation context by Lemma 1.

D1 ⇒∗ [l 7→ E{ME{l, . . . , l}}, l′ 7→ ME{l, . . . , l}, . . .] ⇒
[l 7→ •, l′ 7→ ME{l, . . . , l}, . . .]

We show that the other record diverges in this case. Below is the
result of the substitution into l:

D2 ⇒∗ [l 7→ E{ME{M, . . . , M}}, l′ 7→ ME{M, . . . , M}, . . .]

The component bound to l is of the form E{E′{M}}, where E′ de-
notes ME{�,M, . . . ,M}. Therefore M appears in an evaluation con-
text in D′

2 and is the next term to be evaluated. However, recall that
M is the term originally bound to l in D2:

D2 = [l 7→ M, l′ 7→ N{M}, . . .]

By Lemma 17 M evaluates to the same result as the first time it was
evaluated:

[l 7→ M, . . .] ⇒∗

[l 7→ E{E′{M}}, . . .] ⇒∗

[l 7→ E{E′{E{E′{M}}}}, . . .] ⇒∗ . . .

As demonstrated above, D2 diverges. Note that by Lemma 7 if a
record diverges on one evaluation path, it diverges on all paths.

(c) next(D′
1, l

′) = •. Then next(D′
2, l

′) = • and both outcomes are ⊥.

(d) next(D′
1, l) = l′′ 6= l. Then the label appearing in the evaluation

context in D′
1 cannot be l so all copies of l in D′

1 and the correspond-
ing copies of M in D′

2 appear in non-evaluation contexts, and by
Lemma 18 next(D′

2, l
′) = l′′. A component bound to l′′ is evaluated.

All components other than l′ are still the same in the two records so
the results of the evaluation will clearly be the same. Note that the
evaluation of the component bound to l′′ may result in a fully eval-
uated term (which will be identical in both records) or in a circular
dependency or a dependency on l. Again, this will happen in both
records. These situations are considered in Cases 3c and 3e.

(e) next(D′
1, l) = l. The situation when the component bound to l′ is

of the form ME{l, . . . , l} in D′
1 and of the form ME{M, . . . , M} in

D′
2 was already considered in 3b. Thus it must be the case that the

components bound to l′ are both of the form E{l} or both of the
form E{l′′} where l′′ depends on l, i.e. next(D′

2, l
′) = l.

Since l needs l′ and l′ needs l in both records, the evaluation encoun-
ters a black hole in both records.

35

4. The first part of Stage III in the top diagram in Figure 4.6: l′ was needed
by l, the component bound to l′ is completely evaluated, and the eval-
uation of l continues. This implies that in D′

1 the label l′ is bound to
MN{l, . . . , l} and in D′

2 it is bound to MN{M, . . . , M}. It is also possible
that the result of evaluating l′ has been substituted into other components,
thus the other components may differ in the two records. Recall that by
the inductive hypothesis D′

1 ∼l
M D′

2. We assume that no component is
bound to a black hole at this point. We have the following cases:

(a) next(D′
1, l) = l. The component bound to l may be different for the

two records. However, l may not appear in an evaluation context
in D′

1 because next(D′
1, l) 6= •. Thus it must be the case that the

component is in the form MN{l, . . . , l} in D′
1 and by the inductive

hypothesis this component is of the form MN{M, . . . , M} in D′
2. By

Lemma 19 the desired property holds after the step D′
1

l=⇒
e

D′′
1 .

(b) next(D′
1, l) = l′′ 6= l. In this case the evaluation will switch to the

component bound to l′′. If this evaluation succeeds without reaching
a black hole or a component bound to E{l} then this case is analogous
to Case 5.
Suppose the evaluation of l′′ reaches E{l}. The same component in
D′

2 evaluates either to E′{l} or to E′{M}. In the former case both
records arrive at a black hole. In the latter case is somewhat similar
to Case 3b: the component bound l in D′

1 evaluates to • right away
and D′

2 repeats the evaluation of M . By Lemma 17 M evaluates to
E{l}. Thus the component bound to l′′ evaluates to a black hole.
Below we show the corresponding evaluation sequence. Without loss
of generality we assume that l depends on l′′ directly, i.e. without
going through a chain of other components.

[l 7→ M, . . .] ⇒∗

[l 7→ E{l′′}, l′′ 7→ E′{M}, . . .] ⇒∗

[l 7→ E{l′′}, l′′ 7→ E′{E{l′′}}, . . .] ⇒∗

[l 7→ •, l′′ 7→ •, . . .]

Another case is when evaluation of l′′ reaches a black hole which is
not cretaed by a reference to l. Then the corresponding component
in D′

2 also evaluates to a black hole since the two records are the
same except occurrences of l and M .

(c) next(D′
1, l) = •. In this case the l component is of the form E{l} in

D′
1. It may be of the form E′{l} in D′

2 in which case in both records
the component evaluates to a black hole. It may also be the case
that the component is of the form E{l} in D′

1 and of the form E′{M}
in D′

2. This case is analogous to Case 3b: D′
1 evaluates to a record

with a black hole and D′
2 diverges since the evaluation of M reaches

E′{M} and by Lemma 17 M continuosly evaluates to E′{M} so D′
2

diverges.

36

(d) next(D′
1, l) is undefined. Since l′ is also completely evaluated, the

next label to be evaluated is l1. See Case 5 for this situation.

5. Stage III in both cases in Figure 4.6 (on the top diagram this is the second
part of Stage III): components bound to l and l′ are fully evaluated, and
the evaluation proceeds with the rest of the labels in L, i.e. with l1, . . . , lm.
Let next(D′

1, l1) = l′′. Note that l is bound to MN{l, . . . , l} in D′
1 and to

MN{M, . . . , M} in D′
2. Again the only non-trivial case is

D′
1 ⇒∗ [l 7→ MN{l, . . . , l}, l′′ 7→ ME{l, . . . , l}, . . .]

⇒ [l 7→ MN{l, . . . , l}, l′′ 7→ ME{MN{l, . . . , l}, l, . . . , l}, . . .] = D′′
1

D′
2 ⇒∗ [l 7→ MN{M, . . . , M}, l′′ 7→ ME{M, . . . , M}, . . .]

⇒∗ [l 7→ MN{M, . . . , M}, l′′ 7→ ME{MN{M, . . . , M},M, . . . ,M}, . . .] = D′′
2

This case is similar to the Case 3b above: since M in the component bound
to l evaluated to MN{M, . . . , M} by the efficient strategy, any other copy
of M in an evaluation context evaluates to the same term as well.

Since by the inductive hypothesis D′
1 ∼l

M D′
2, we have D′′

1 ∼l
M D′′

2 .

We have proven that for the case when l 6= l′ if D1

L
=⇒∗

e
D′

1 then there ex-

ists D′
2 s.t. D2

L
=⇒∗

e
D′

2, D′
1 ∼l

M D′
2, and Outcome(D′

1) = ⊥ if and only if

Outcome(D′
2) = ⊥.

Part 2. Now we consider the situation when l = l′. Suppose D1

L
=⇒∗

e
D′

1.

We would like to prove by induction that there exists D′
2 s.t. D2

L
=⇒∗

e
D′

2 and

D′
1 ∼l

M D′
2 and Outcome(D′

1) = ⊥ if and only if Outcome(D′
1) = ⊥.

In this case the two records initially are of the form:

D1 = [l 7→ N{l}, . . . ,]
D2 = [l 7→ N{N{l}}, . . . ,]

Let M = N{l}. We use the efficient evaluation strategy starting at l followed
by some labels l1, . . . ln.

1. Suppose that the component bound to l is being evaluated. We have the
following cases:

(a) next(D′
1, l) is undefined. By the inductive hypothesis the component

bound to l is of the form MN{l, . . . , l} in D′
1 and MN{M, . . . , M} in

D′
2, and the evaluation switches to label l1. See Case 2.

(b) next(D′
1, l) = l. The evaluation of this component continues. Note

that the context containing all occurrences of l for one record and all
occurrences of M for the other one must be a non-evaluation context
(otherwise next(D′

1, l) = •). By Lemma 19 the desired property holds
after the next evaluation step.

37

(c) next(D′
1, l) = l′ 6= l. Since l depends on l′, it cannot be the case that

l′ depends on l (otherwise next(D′
1, l) = •). Thus all the components

other than the l component are the same in the two records, and the
desired property holds after an evaluation step on l′.

(d) next(D′
1, l) = •. This case can happen for several reasons:

i. In both records the component bound to l is of the form E{l} (for
possibly different E). This means that the label in the context is
not one of those that differ in the two records. In both records
the component bound to l evaluates to a black hole.

ii. In both records the component bound to l is of the form E{l′}
where l′ is either bound to a black hole or depends on a compo-
nent bound to a black hole or depends, directly or via a depen-
dency chain, on l. In all of these cases both records evaluate to
components with black holes.

iii. D′
1 = ME{l, . . . , l}, D′

2 = ME{M, . . . , M}. In this case D′
1 ⇒

[l 7→ •, . . .]. By Lemma 17 evaluation of D′
2 proceeds as follows:

D2 = [l 7→ M, , . . . ,]
⇒∗ [l 7→ E{M}, . . . ,]
⇒∗ [l 7→ E{E{M}}, . . . ,] ⇒∗ . . .

We see that D2 diverges, so Outcome(D1) = Outcome(D2) = ⊥.
This case is, once again, similar to Case 3b in Part 1.

2. The component bound to l is fully evaluated and the efficient strategy
proceeds to other components. By the inductive hypothesis D′

1 ∼l
M D′

2

and all copies of l and the corresponding copies of M appear in non-
evaluation context positions.

The only non-trivial case is when a component is bound to ME{l, . . . , l}
in D′

1 and to ME{M, . . . , M} in D′
2. Because of the efficient strategy all

substitutions during the evaluation of a copy of M are the same as during
the evaluation of M bound to l. By Lemma 17 we have D′′

1 ∼l
M D′′

2 .

Part 3. The other direction of Lemma 16 for l 6= l′ is proven analogously.
The order of evaluation is completely determined by the efficient strategy and is
the same in both records. Thus if we are given an efficient evaluation sequence
that starts at D2, we observe that D1 will follow the same evaluation sequence
as in Part 1, so the same relation D′

1 ∼l
M D′

2 takes place. However, note that
the sequence that starts at D′

2 takes extra steps because duplication of a term
M causes repeated evaluation of this term. Specifically, we have the following
relation between D′

1 and D′
2:

1. either next(D′
l, l
′′) = next(D′

l, l
′′) (where l′′ may be equal to l or to l′ or

be different from both)

2. or the component being evaluated is of the form ME{l, . . . , l} in D′
1 and

of the form ME{M, . . . , M} in D′
2. In this case additional steps may be

38

required for D′
2 to complete the evaluation of M before the two resulting

terms become (l,M)-similar, so D′
2 ⇒∗ D′′

2 s.t. D′
1 ∼l

M D′′
2 .

These extra steps in the sequence that starts at D′
2 account for the additional

steps D′
2 ⇒∗ D′′

2 in Lemma 16 (see also Figure 4.5). A simple example below
illusrates the issue:

D1 = [l 7→ 2 + 3, l′ 7→ λx.x @ l] ⇒
[l 7→ 5, l′ 7→ λx.x @ l] ⇒
[l 7→ 5, l′ 7→ l] ⇒

D′
1 = [l 7→ 5, l′ 7→ 5] ⇒

D1 = [l 7→ 2 + 3, l′ 7→ λx.x @ l] →
D2 = [l 7→ 2 + 3, l′ 7→ λx.x @ 2 + 3] ⇒∗

D′
2 = [l 7→ 5, l′ 7→ 2 + 3] ⇒∗

D′′
2 = [l 7→ 5, l′ 7→ 5]

Here it is not the case that D′
1 ∼l

M D′
2, an extra step to D′′

2 is needed to
“synchronize” the two records, and D′

1 ∼l
M D′′

2 .
Part 4. The other direction of Lemma 16 in the case when l = l′. Again,

the proof is analogous to that of Part 2 above with possible extra steps as in
Part 3 above.

Lemma 20 (Non-evaluation Substitution Step Preserves Meaning). If D1
S
↪→

D2 then Outcome(D1) = Outcome(D2).

Proof. By Lemma 16 if Outcome(D1) 6= ⊥ then Outcome(D2) 6= ⊥. Let D′
1

be the normal form of D1 and D′
2 be the normal form of D2. Since D′

1 is
a normal form, none of the copies of l appear in an evaluation context, thus
all its components are bound to MN{l, . . . , l}. By Lemma 16 D′

1 ∼l
M D′

2, so
all components of D′

2 are of the form MN{M, . . . , M}. Thus by Lemma 15
Cl(D′

1) = Cl(D′
2).

By a similar reasoning we can assume that Outcome(D2) 6= ⊥ and conclude
that there is a normal form D′

1 of D1 and Cl(D′
2) = Cl(D′

1).

4.5 Computational Soundness Theorem

Theorem 1 (Computational Soundness). If D1 ↔ D2 then Outcome(D1) =
Outcome(D2).

Proof. By Lemmas 6, 11, and 20 all steps in the calculus preserve the outcome.

39

Chapter 5

Conclusions and Future
Work

We have proven that the call-by-name calculus of recursively-scoped records is
computationally sound. Our system captures the essential features of mutually
recursive components. We plan to investigate applications of our proof method
to more complex systems with possible cyclic dependencies, such as letrec
calculi and more sophisticated systems that model modules and linking.

5.1 Acknowledgments

Many thanks to Emily Christiansen who participated in the early stages of
this research, to Dr. Manfred Schmidt-Schauß for helpful discussions, and to
Franklyn Turbak and Nicholas McPhee for helpful feedback on drafts of this
work.

40

Bibliography

[1] Davide Ancona and Elena Zucca: A calculus of module systems. Vol. 12,
2002, pp. 91-132.

[2] Z. M. Ariola, Stefan Blom: Skew confluence and the lambda calculus with
letrec. Annals of pure and applied logic 117/1-3, 97-170, 2002

[3] Z. M. Ariola and J. W. Klop: Equational Term Graph Rewriting. Funda-
mentae Informaticae, Vol. 26, Nrs. 3,4, June 1996. p. 207-240.

[4] Z. M. Ariola, J. W. Klop: Lambda calculus with explicit recursion. Journal
of Information and Computation, Vol. 139 (2): 154-233, 1997.

[5] H. P. Barendregt: The Lambda Calculus, its Syntax and semantics. Studies
in Logic, volume 103, Elsevier Science Publishers, 1984.

[6] Sonia Fagorzi and Elena Zucca: A Calculus for Reconfiguration: (Extended
abstract). Electr. Notes Theor. Comput. Sci., Vol. 135, N. 3, 2006, pp. 49-59.

[7] E. Machkasova: Computational Soundness of Non-Confluent Calculi with
Applications to Modules and Linking, Ph.D. dissertation, April 2002, Boston
University

[8] E. Machkasova: Computational Soundness of a Call by Name Calculus of
Records. Working Papers Series, University of Minnesota, Morris, Volume 2
Number 3, 2007. Available at http://cda.morris.umn.edu/ ẽlenam/

[9] E. Machkasova, E. Christiansen: Call-by-name Calculus of Records
and its Basic Properties. Working Papers Series, University of
Minnesota, Morris, Volume 2 Number 2, 2006. Available at
http://cda.morris.umn.edu/ ẽlenam/

[10] E. Machkasova, F. Turbak: A calculus for link-time compilation. In Pro-
gramming Languages & Systems, 9th European Symp. Programming, vol-
ume 1782 of LNCS, pages 260-274 Springer-Verlag, 2000

[11] G. D. Plotkin: Call-by-name, call-by-value and the lambda calculus. The-
oret. Comput. Sci., 1, 1975.

41

[12] Manfred Schmidt-Schauß and Michael Huber: A lambda-calculus with le-
trec, case, constructors and non-determinism. In First International Work-
shop on Rule-Based Programming, 2000.

[13] M. Schmidt-Schauß: Correctness of copy in calculi with letrec, case and con-
structors. Frank report 28, Institut für Informatik. Fachbereich Informatik
und Mathematik. J. W. Goethe-Universität Frankfurt am Main, February
2007.

[14] J. B. Wells, Detlef Plump, and Fairouz Kamareddine: Diagrams for mean-
ing preservation. In Rewriting Techniques & Applications, 14th Int’l Conf.,
RTA 2003, volume 2706 of LNCS, pp. 88-106. Springer-Verlag, 2003

[15] J. B. Wells and RenVestergaard: Equational reasoning for linking with first-
class primitive modules. n Programming Languages & Systems, 9th Euro-
pean Symp. Programming, volume 1782 of LNCS, pages 412-428. Springer-
Verlag, 2000.

42

