
Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Improving the Interoperability of Java and
Clojure

Stephen Adams

University of Minnesota: Morris

April 14th, 2012

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

A little reminder about Java

An object-oriented language released by Sun Microsystems in
1995.

I Compiled to Java bytecode
I Java bytecode is run on the Java Virtual Machine
I Second language in TIOBE programming Community

Index (as of April 2012)

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Clojure

The Clojure programming language was released in 2007 by
the software developer Rich Hickey. Clojure was designed with
four features in mind:

The Four Features of Clojure

I A Lisp
I Functional programming
I Symbiosis with an established platform (Java)
I Designed for concurrency

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Clojure

The Clojure programming language was released in 2007 by
the software developer Rich Hickey. Clojure was designed with
four features in mind:

The Four Features of Clojure

I A Lisp
I Functional programming
I Symbiosis with an established platform (Java)
I Designed for concurrency

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

LISP and Functional Programming

I Lisp was developed in 1958
I The earliest functional language
I Emphasizes the application of functions
I Imperative programming emphasizes changes in state

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Functional Programming and concurrency

I Functional languages have immutable data by default
I A function will always return the same results given the

same arguments
I Easier to predict behavior of a program in a concurrent

environment

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Who is this talk for?

I Need to parallelize your work?
I Are you tired of Java?

I Have a project already written in Java?
I Have a Java library you use a lot?

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Who is this talk for?

I Need to parallelize your work?
I Are you tired of Java?
I Have a project already written in Java?
I Have a Java library you use a lot?

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Who is this talk is for?

"Clojure does Java better than Java" - Stuart Halloway, at the
Greater Atlanta Software Symposium, 2009.

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Introduction

Introduction to Clojure
Basic Clojure syntax
Data Structures and Collections

Functional Programming in Clojure
First Class Functions in Clojure
Anonymous Functions in Clojure

Java Interop
Basic Java calling
Java Objects in Clojure
Custom types in Clojure

Conclusion & References

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Prefix Notation

(+ 2 3)
=> 5

(+ 2 3 4)
=> 9

(inc 4)
=> 5

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Prefix Notation

(+ 2 3)
=> 5

(+ 2 3 4)
=> 9

(inc 4)
=> 5

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Clojure Data Structures

I Many of Clojure’s data structures are just Java data
structures; strings, characters, and all numbers are just
Java types.

I Clojure provides its own collections.

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Clojure Data Structures

I Many of Clojure’s data structures are just Java data
structures; strings, characters, and all numbers are just
Java types.

I Clojure provides its own collections.

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Every Clojure collection is denoted by a different literal symbol
pair.

Collection Literals

List (1 2 3 4)
Vector ["apple" "banana" "orange"]
Hashmap { :name "Stephen Adams" :phone 555555555 }

I Keywords are symbolic identifiers, denoted with a leading
colon.

I Provide very fast equality tests

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Variables and Functions

(def vect [1 2 3 4 5])

(defn square [x]
(* x x))

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

The functional features of Clojure

Functional programming primarily refers to two language
features:

I First class functions
I Anonymous functions

Clojure supports both of these features.

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

First Class Functions
Passing functions to other functions

(defn square [x]
(* x x))

(map square [1 2 3 4 5])
=> [1 4 9 16 25]

(reduce + [1 2 3 4 5])
=> 15

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

First Class Functions
Passing functions to other functions

(defn square [x]
(* x x))

(map square [1 2 3 4 5])
=> [1 4 9 16 25]

(reduce + [1 2 3 4 5])
=> 15

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

First Class Functions
Passing functions to other functions

(defn square [x]
(* x x))

(map square [1 2 3 4 5])
=> [1 4 9 16 25]

(reduce + [1 2 3 4 5])
=> 15

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Anonymous Functions

(defn all-same? [vect]
(if (empty? vect)
true
(every?
(fn [x] (= (first vect) x )) (rest vect))

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

Introduction to Java Interop

The idea for Clojure always involved interoperability with an
existing language. Java was chosen for various reasons:

I Access to previously written Java libraries
I Already implemented, garbage collection and other

memory & resource management tools.
I JVM is OS agnostic.

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

The dot special form

I Provides basic access to Java fields and methods
I Can also be read as “in the scope of."

(. "fred" toUpperCase)
=> "FRED"

"fred".toUpperCase();

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

The dot special form

I Provides basic access to Java fields and methods
I Can also be read as “in the scope of."

(. "fred" toUpperCase)
=> "FRED"

"fred".toUpperCase();

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

The dot special form cont.

(.toUpperCase "fred")

Accessing static methods and fields

(. Math PI)
=> 3.141592653589793

(Math/PI)
=> 3.141592653589793
(Math/abs -2)
=> 2

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

The dot special form cont.

(.toUpperCase "fred")

Accessing static methods and fields

(. Math PI)
=> 3.141592653589793

(Math/PI)
=> 3.141592653589793
(Math/abs -2)
=> 2

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

Object Construction and modification

(new StringBuffer "fred")
=> #<StringBuffer fred>

(doto (new StringBuffer "fred")
(.setCharAt 0 \F)
(.append " is a nice guy!"))
=> #<StringBuffer Fred is a nice guy!>

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

Object Construction and modification

(new StringBuffer "fred")
=> #<StringBuffer fred>

(doto (new StringBuffer "fred")
(.setCharAt 0 \F)
(.append " is a nice guy!"))
=> #<StringBuffer Fred is a nice guy!>

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

Object Construction and modification cont.

public class ExampleBuffer {
public static void main(String[] args){

StringBuffer buff = new StringBuffer("fred");
buff.setCharAt(0, "F");
buff.append(" is a nice guy");

}
}

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

Many ways of defining a type
By Chas Emerick, from: http://bit.ly/IiozRP

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

Many ways of defining a type

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

Proxy

I Must implement a Java interface or extend a Java class
I Creates a single instance of an anonymous Java class
I Cannot define methods not declared by a superclass or

interface

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

Proxy cont.

(defn add-mousepressed-listener
[component func args]
(let [listener

(proxy [MouseAdapter] []
(mousePressed [event]

(apply func event args)))]
(.addMouseListener component listener)

listener))

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

Gen-class

I Proxy will only allow you to do so much because you can
only overload functions defined by a super class or
interface.

I Proxy also wont create a named type.

I Without a named type Java is unable to call Clojure code.

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

Gen-class

I Proxy will only allow you to do so much because you can
only overload functions defined by a super class or
interface.

I Proxy also wont create a named type.
I Without a named type Java is unable to call Clojure code.

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

Gen-class cont.

(gen-class
:name Example
:prefix "example-"))

(defn example-toString
[this]
"Hello, world!")

(def aClass (new Example))
(.toString aClass)
=> "Hello, world!"

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Basic Java calling
Java Objects in Clojure
Custom types in Clojure

Gen-class cont.

(gen-class
:name Example
:prefix "example-"))

(defn example-toString
[this]
"Hello, world!")

(def aClass (new Example))
(.toString aClass)
=> "Hello, world!"

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Wrapping up the interop zone

I Proxy creates a single instance of an anonymous class
I A class defined by proxy is not visable to external files
I Gen-class creates a named type which Java will be able to

see

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Java - Clojure Relationship

I You want to program Clojure in Clojure, not Java.
I Gen-class and, to some extent, proxy break from

Clojure-like syntax.
I These functions should be used sparingly.
I C. Emerick’s figure (http://bit.ly/IiozRP).

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Recommendations

I Push Clojure’s native abstractions into interop zone,
possibly macros.

I Centralize documentation sources.
I Streamline IDE setup for beginners.

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

Why this matters

“The killer app for Clojure is the JVM itself. Everyone’s fed up
with the Java language, but understandably we don’t want to
abandon our investment in the Java Virtual Machine and its
capabilities: the libraries, the configuration, the monitoring, and
all the other entirely valid reasons we still use it."
Steve Yegge, in the foreward to Joy of Clojure.

Stephen Adams Improving the Interoperability of Java and Clojure



Outline
Introduction

Introduction to Clojure
Functional Programming in Clojure

Java Interop
Conclusion & References

References

I CLOJUREDOCS.ORG. Mar. 2012. [Online; accessed
March-2012].

I CLOJURE.ORG. Mar. 2012. [Online; accessed
March-2012].

I Fogus, M., and Houser, C. The Joy of Clojure, Manning
Publications.

I Halloway, S. Clojure-Java interop: A better Java than Java.
QCon.

Stephen Adams Improving the Interoperability of Java and Clojure


	Outline
	Introduction
	Introduction to Clojure
	Functional Programming in Clojure
	Java Interop
	Basic Java calling
	Java Objects in Clojure
	Custom types in Clojure

	Conclusion & References

