
Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

A Finite Simulation Method in a
Non-Deterministic Call-by-Need

Lambda-Calculus with letrec, constructors, and
case

Manfred Schmidt-Schauss1 and Elena Machkasova2

1Inst. Informatik, J.W. Goethe-University

2University of Minnesota, Morris

Rewriting Techniques and Applications (RTA) 2008



Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Motivation for finite simulation approach

Proving correctness of compiler transformations is especially
challenging for higher-order languages with:

concurrency
memory manipulation
user interactions

Our calculus models a Haskell-like language:
letrec, non-determinism, call-by-need, constructors.
We aim to prove contextual equivalence of expressions:
two expressions are the same if they behave the same in every
context (maximal equivalence).
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Motivation for finite simulation approach

Diagram methods for proving correctness of transformations
(Plotkin75, Ariola&Klop96 and later modifications) require
closing commutative diagrams - some do not hold, some
difficult to prove.

Howe‘s (Howe89,96) simulation method has been applied to
similar calculi (Mann04), but fails on cyclic dependencies.

We propose a finite simulation method. It provides a way to
prove contextual equivalence of some expressions based on
answer-sets (pre-evaluated expressions).

If computation of answer-sets succeeds at a finite depth, it
shows contextual equivalence of expressions.
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Overview: small-step operational semantics

We consider a non-deterministic call-by-need calculus.
choice represents non-determinism.
Semantics via normal order reduction:
rewrite (small-step) operational semantics.

letrec x = True, y = False, z = λu.u in z(choice x y) →
letrec Env in (λu.u) (choice x y) →
letrec Env in (λu.u) y →
letrec Env in (λu.u) False→
letrec Env in letrec u = False in u → . . .

where Env stands for x = True, y = False, z = λu.u.
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Overview: may-convergence

An expression t may-converges if there is a sequence of
normal order steps t ∗−→ t ′, where t ′ is a normal form: t↓.
If there is no such sequence then t↑ (t diverges).

Examples:

(choice Ω True)↓

(choice (λxy .x) (λxy .y))ΩΩ↑

Notation: Ω = (λx .xx)(λx .xx)
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Overview: pre-order, contextual equivalence

Let C[·] denote a one-hole context, C[t ] - context C filled with
an expression t (free variables may be captured).
Contextual pre-order:

s ≤c t iff ∀C[·] : C[s]↓ ⇒ C[t ]↓

Example: (choice s Ω) ≤c s.
Contextual equivalence:

s ∼c t iff s ≤c t ∧ t ≤c s

Example: (choice True False) ∼c (choice False True).
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Overview: the idea of answer-set approach

For an expression t we construct an answer-set ans(t): a set of
all “values” v s.t. v ≤c t , where v is built from abstractions and
constructors (e.g. lists) and may contain Ω in place of some
letrec-bound variables.
For example, letrec x = (cons 1 x) in x has answers

{(cons 1 Ω), (cons 1 (cons 1 Ω)), . . . }

where cons is a list constructor.
Main contribution: we can compare expressions based on ≤c
relation of their sets of answers.
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Calculus syntax

The syntax of the calculus is as follows (note: LS in the paper):

E ::= V | (c E1 . . . Em) | E1 E2 | λ V .E | (choice E1 E2)

| (letrec V1 = E1, . . . , Vn = En in E)

| (case E (Pat1 → E1) . . . (Patn → En))

Pat ::= (c V1 . . . Var(c))

where E are expressions, V are variables, c is a constructor
(each of a fixed arity), Pat denotes a pattern.
case represents pattern-matching - taking apart a constructor
expression; exactly one alternative matches.
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Marking algorithm

Marking (unwind): find a needed subexpression. Notations:
T - top-level expression
V - visited subexpression
S - current (needed) expression

(s t)S∨T → (sS t)V

(letrec Env in t)T → (letrec Env in tS)V

(letrec x = s, Env in C[xS]) → (letrec x = sS, Env in C[xV ])

(letrec x = s, y = C[xS], Env in r) →
(letrec x = sS, y = C[xV ], Env in r) if C 6= [.]

(case s alts)S∨T → (case sS alts)V

Marking specifies a normal order reduction strategy.
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Marking algorithm

Marking (unwind): find a needed subexpression. Notations:
T - top-level expression
V - visited subexpression
S - current (needed) expression

(s t)S∨T → (sS t)V

(letrec Env in t)T → (letrec Env in tS)V

(letrec x = s, Env in C[xS]) → (letrec x = sS, Env in C[xV ])

(letrec x = s, y = C[xS], Env in r) →
(letrec x = sS, y = C[xV ], Env in r) if C 6= [.]

(case s alts)S∨T → (case sS alts)V

(letrec x = (λy .y)(λz.z) in x True)T →
(letrec x = (λy .y)(λz.z) in (x True)S)V
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Marking algorithm

Marking (unwind): find a needed subexpression. Notations:
T - top-level expression
V - visited subexpression
S - current (needed) expression

(s t)S∨T → (sS t)V

(letrec Env in t)T → (letrec Env in tS)V

(letrec x = s, Env in C[xS]) → (letrec x = sS, Env in C[xV ])

(letrec x = s, y = C[xS], Env in r) →
(letrec x = sS, y = C[xV ], Env in r) if C 6= [.]

(case s alts)S∨T → (case sS alts)V

(letrec x = (λy .y)(λz.z) in (x True)S)V →
(letrec x = (λy .y)(λz.z) in (xS True)V )V
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Marking algorithm

Marking (unwind): find a needed subexpression. Notations:
T - top-level expression
V - visited subexpression
S - current (needed) expression

(s t)S∨T → (sS t)V

(letrec Env in t)T → (letrec Env in tS)V

(letrec x = s, Env in C[xS]) → (letrec x = sS, Env in C[xV ])

(letrec x = s, y = C[xS], Env in r) →
(letrec x = sS, y = C[xV ], Env in r) if C 6= [.]

(case s alts)S∨T → (case sS alts)V

(letrec x = (λy .y)(λz.z) in (xS True)V )V →
(letrec x = ((λy .y)(λz.z))S in (xV True)V )V . . .
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Operational semantics rules

(lbeta) ((λx .s)S r) → (letrec x = r in s)

(cp-in) (letrec x = wS, Env in C[xV ])
→ (letrec x = w , Env in C[w ])

where w is λy .t or (c x1 . . . xn)

(cp-e) (letrec x = wS, Env , y = C[xV ] in r)
→ (letrec x = w , Env , y = C[w ] in r)

where w is λy .t or (c x1 . . . xn)

(llet-in) (letrec Env1 in (letrec Env2 in r)S)
→ (letrec Env1, Env2 in r) (skip more let rules)

(case) (case (c t1 . . . tn)S . . . ((c y1 . . . yn) → s) . . .)
→ (letrec y1 = t1, . . . , yn = tn in s)

(choice-l) (choice s t)S∨T → s
(choice-r) (choice s t)S∨T → t
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Normal order reductions, WHNF

Normal order reduction s no−→ t :
run the marking algorithm on s
if success, apply the rules so that labels are matched

letrec x = ((λy .y)S(λz.z))V in (xV True)V )V no−→
letrec x = (letrec y = λz.z in y) in (x True)

Weak Head Normal Form (WHNF) - normal form of normal
order reduction. Let v (value) be λx .s or (c x1 . . . xn). WHNF is:

a value v , or
letrec Env in v

Evaluation: s
no,∗−−→ s′ where s′ is WHNF. Denote: s↓.
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Contextual preorder

Contextual preorder: s ≤c t iff ∀C[·] : C[s]↓ ⇒ C[t ]↓.
Ω is the least element: ∀s : Ω ≤c s.

Contextual equivalence: s ∼c t iff s ≤c t ∧ t ≤c s.
(choice True Ω) ∼c True.
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Extra transformations

Transformations (for proofs and compiler optimizations)
reduction rules applied in contexts other than those labeled
additional rules

A sample additional rule:

(gc) (letrec x = s, Env in t) → (letrec Env in t)
if x does not occur in Env nor in t

Proved: transformations preserve may-convergence in all
contexts (i.e. are correct).
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Standardization

Non-deterministic calculus: any sequence of correct reductions
preserves may-convergence.

Theorem (Standardization)

If t ∗−→ t ′ where t ′ is a WHNF and the sequence ∗−→ consists of
any sequence of reduction or transformation steps then t↓.

(∗ denotes reflexive transitive closure)

t ∗ //

no,∗
���
�
� t ′(WHNF )

t ′′(WHNF )
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“Stop” reduction } and pseudovalues

We approximate evaluation results by finite simulation.
Components with a possibility of infinite recursion are replaced
by a symbol } (read: Stop). Denotes potential divergence, i.e.
synonym to Ω.

letrec x = λy .x in x True→ letrec x = λy .x in } True

A pseudo-value is an expression built from }, constructors and
abstractions: (cons } λx .x).
An answer is a pseudo-value that is not the constant }.
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Approximation calculus

Extend the calculus with } and approximation reduction to
compute sets of answers. s is a closed expression, for instance
letrec y = λz.y in (cons y y).
Pre-evaluation of expressions (approximation reduction):

Start with s′ = letrec x = s in x :
letrec x = (letrec y = λz.y in (cons y y)) in x
Evaluate s′ to WHNF:
letrec x = (cons y y), y = λz.y in (cons y y)

perform (non-deterministically) any number of copy steps:
letrec x = (cons y y), y = λz.y in (cons (λz.y) y),
letrec x = (cons y y), y = λz.y in (cons (λz.(λz.y)) y),
etc.
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Approximation calculus

Extend the calculus with } and approximation reduction to
compute sets of answers. s is a closed expression, for instance
letrec y = (λz.y) in (cons y y).
Pre-evaluation of expressions (approximation reduction):

Start with s′ = letrec x = s in x :
letrec x = (letrec y = λz.y in (cons y y)) in x
Evaluate s′ to WHNF:
letrec x = (cons y y), y = λz.y in (cons y y)

perform (non-deterministically) any number of copy steps:
letrec x = (cons y y), y = λz.y in (cons (λz.y) y),
letrec x = (cons y y), y = λz.y in (cons (λz.(λz.y) y),
etc.
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Approximation calculus

Extend the calculus with } and approximation reduction to
compute sets of answers. s is a closed expression, for instance
letrec y = (λz.y) in (cons y y).
Pre-evaluation of expressions (approximation reduction):

Start with s′ = letrec x = s in x :
letrec x = (letrec y = λz.y in (cons y y)) in x
Evaluate s′ to WHNF:
letrec x = (cons y y), y = λz.y in (cons y y)

perform (non-deterministically) any number of copy steps:
letrec x = (cons y y), y = λz.y in (cons (λz.y) y),
letrec x = (cons y y), y = λz.y in (cons (λz. (λz.y)) y),
etc.



Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Approximation calculus (cont.)

Some results of the previous step:
letrec x = (cons y y), y = λz.y in (cons (λz.y) y),
letrec x = (cons y y), y = λz.y in (cons (λz.λz.y) y),
letrec x = (cons y y), y = λz.y in (cons y (λz.y))
Approximation reduction (cont.):

remove the top letrec-environment, replace remaining
let-bound variables by }:
(cons (λz.}) }), (cons (λz.λz.}) }), (cons } (λz.})),
etc.

These are answers ans(s) for
s = letrec y = λz.y in (cons y y).
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Approximation calculus (cont.)

Some results of the previous step:
letrec x = (cons y y), y = λz.y in (cons (λz.y) y),
letrec x = (cons y y), y = λz.y in (cons (λz.λz.y) y),
letrec x = (cons y y), y = λz.y in (cons y (λz.y))
Approximation reduction (cont.):

remove the top-letrec-environment, replace remaining
let-bound variables by }:
(cons (λz.}) }), (cons (λz.λz.}) }), (cons } (λz.})),
etc.

These are answers ans(s) for
s = letrec y = λz.y in (cons y y).
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Approximation calculus (cont.)

Some results of the previous step:
letrec x = (cons y y), y = λz.y in (cons (λz.y) y),
letrec x = (cons y y), y = λz.y in (cons (λz.λz.y) y),
letrec x = (cons y y), y = λz.y in (cons y (λz.y))
Approximation reduction (cont.):

remove the top-letrec-environment, replace remaining
let-bound variables by }:
(cons (λz.}) }), (cons (λz.λz.}) }), (cons } (λz.})),
etc.

These are answers ans(s) for
s = letrec y = λz.y in (cons y y).
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Answers as a finite model of expressions

R[] reduction contexts denote a position in an expression where
a normal order reduction takes place.

Theorem
Let R be a reduction context, s a closed expression, R[s]↓.
Then there is v ∈ ans(s) such that R[v ]↓.
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Main ideas of the proof:

R[letrec x = s in x ]
n // WHNF

R[letrec Env in x ]
cp,n+1 // R[w ]

},∗ // R[v ]
≤n // WHNF

Env has labeled bindings derived from x = s
in R[letrec Env in x ], copy all bindings of Env into the
bound variables n + 1 times
replace the remaining letrec-bound variables by }.
R[v ]↓ since all the positions affected by reductions in R[]
have values. } appears only in unreachable positions.
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Answer sets and ≤c

U - a set of expressions, t - an expression. t is a lub (least
upper bound) of U iff ∀u ∈ U : u ≤c t , and for any s s.t.
∀u ∈ U : u ≤c s it holds that t ≤c s.
The expression t is called a contextual lub (club) of U, iff for
C[]: C[t ] is a lub of {C[r ] | r ∈ U}.
W (t) = ans(t) ∪ {u | u is a club of A ⊆ ans(t)} (some extra
conditions given in the paper)

Theorem
Let s, t be closed expressions. If for all v ∈ ans(s) there is
some w ∈ W (t) with v ≤c w, then s ≤c t .
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Procedure for comparing answer sets

s ≤c t if ∀v ∈ ans(s) ∃w ∈ ans(t) s.t. v ≤c w .
For instance, t = (choice Ω s) ∼c s since ans(t) = ans(s).

How to compare complex pseudovalues?
constructors: (c s1 . . . sn) ≤c (c t1 . . . tn) iff si ≤c ti for all i .
abstractions: λx .s ≤c λx .t iff for all closed pseudo-values
v : (λx .s) v ≤c (λx .t) v .
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Effectiveness of the method

The method provides an effective (finite) procedure for deciding
s ≤c t if the following takes place:

bounded reductions to WHNF
comparable answer sets (may be infinite)
the ability to test equivalence of answers
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Conclusions and future work

Conclusions:
We developed and proved correct a finite simulation method for
a non-deterministic call-by-need calculus with cyclic bindings.
The method provides a procedure for deciding ≤c and ∼c
relations in a may-convergence framework which is effective if
certain conditions hold.
Future work: to extend the method to must-convergence and to
work towards general simulation.
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