A Finite Simulation Method in a Non-Deterministic Call-by-Need Lambda-Calculus with letrec, constructors, and case

Manfred Schmidt-Schauss¹ and Elena Machkasova²

¹Inst. Informatik, J.W. Goethe-University

²University of Minnesota, Morris

Rewriting Techniques and Applications (RTA) 2008

ヘロト ヘアト ヘヨト

Motivation for finite simulation approach

Proving correctness of compiler transformations is especially challenging for higher-order languages with:

- concurrency
- memory manipulation
- user interactions

Our calculus models a Haskell-like language: letrec, non-determinism, call-by-need, constructors. We aim to prove *contextual equivalence* of expressions: two expressions are the same if they behave the same in every context (maximal equivalence).

Motivation for finite simulation approach

Diagram methods for proving correctness of transformations (Plotkin75, Ariola&Klop96 and later modifications) require closing commutative diagrams - some do not hold, some difficult to prove.

Howe's (Howe89,96) *simulation* method has been applied to similar calculi (Mann04), but fails on cyclic dependencies.

We propose a *finite simulation method*. It provides a way to prove contextual equivalence of some expressions based on *answer-sets* (pre-evaluated expressions).

If computation of answer-sets succeeds at a finite depth, it shows contextual equivalence of expressions.

Overview: small-step operational semantics

We consider a *non-deterministic call-by-need* calculus. choice represents non-determinism. Semantics via normal order reduction: rewrite (small-step) operational semantics.

letrec $X = \text{True}, Y = \text{False}, Z = \lambda u.u \text{ in } Z(\text{choice } X \ y) \rightarrow$ letrec Env in $(\lambda u.u)$ (choice $X \ y) \rightarrow$ letrec Env in $(\lambda u.u) \ y \rightarrow$ letrec Env in $(\lambda u.u)$ False \rightarrow letrec Env in letrec $u = \text{False in } u \rightarrow \dots$

where *Env* stands for $x = \text{True}, y = \text{False}, z = \lambda u.u.$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへぐ

Overview: may-convergence

An expression *t* may-converges if there is a sequence of normal order steps $t \xrightarrow{*} t'$, where t' is a normal form: $t\downarrow$. If there is no such sequence then $t\uparrow$ (*t* diverges).

(日)

Examples:

(choice Ω True)

(choice $(\lambda xy.x) (\lambda xy.y))\Omega\Omega^{\uparrow}$

Notation: $\Omega = (\lambda x.xx)(\lambda x.xx)$

Overview: pre-order, contextual equivalence

Let $C[\cdot]$ denote a one-hole context, C[t] - context C filled with an expression t (free variables may be captured). Contextual *pre-order*.

$$s \leq_c t$$
 iff $\forall C[\cdot] : C[s] \downarrow \Rightarrow C[t] \downarrow$

Example: (choice $s \Omega$) $\leq_c s$. Contextual *equivalence*:

$$s \sim_c t$$
 iff $s \leq_c t \wedge t \leq_c s$

Example: (choice True False) \sim_c (choice False True).

Overview: the idea of answer-set approach

For an expression *t* we construct an *answer-set* ans(t): a set of all "values" *v* s.t. $v \leq_c t$, where *v* is built from abstractions and constructors (e.g. lists) and may contain Ω in place of some letrec-bound variables.

For example, letrec $x = (cons \ 1 \ x)$ in x has answers

 $\{(cons 1 \Omega), (cons 1 (cons 1 \Omega)), \dots \}$

where *cons* is a list constructor.

Main contribution: we can compare expressions based on \leq_c relation of their sets of answers.

Calculus syntax

The syntax of the calculus is as follows (note: L_S in the paper):

$$E ::= V | (c E_1 \dots E_m) | E_1 E_2 | \lambda V.E | (choice E_1 E_2) | (letrec V_1 = E_1, \dots, V_n = E_n in E) | (case E (Pat_1 \rightarrow E_1) \dots (Pat_n \rightarrow E_n))$$

Pat ::= (c V_1 \ldots V_{ar(c)})

where *E* are expressions, *V* are variables, *c* is a constructor (each of a fixed arity), *Pat* denotes a pattern. case represents *pattern-matching* - taking apart a constructor expression; exactly one alternative matches.

Marking algorithm

 \sim

Marking (*unwind*): find a needed subexpression. Notations:

- T top-level expression
- V visited subexpression

• S - current (needed) expression

$$(s t)^{S \lor T} \rightarrow (s^S t)^V$$

(letrec Env in $t)^T \rightarrow$ (letrec Env in $t^S)^V$
(letrec $x = s$, Env in $C[x^S]$) \rightarrow (letrec $x = s^S$, Env in $C[x^V]$)
(letrec $x = s, y = C[x^S]$, Env in r) \rightarrow
(letrec $x = s^S, y = C[x^V]$, Env in r) if $C \neq [.]$
(case $s alts)^{S \lor T} \rightarrow$ (case $s^S alts)^V$

Marking specifies a normal order reduction strategy.

Marking algorithm

Marking (*unwind*): find a needed subexpression. Notations:

- T top-level expression
- V visited subexpression

$$(s t)^{S \lor T} \to (s^S t)^V$$

 $(\text{letrec } Env \text{ in } t)^T \rightarrow (\text{letrec } Env \text{ in } t^S)^V$

 $\begin{array}{l} (\texttt{letrec } x = s, \textit{Env} \texttt{ in } C[x^S]) \rightarrow (\texttt{letrec } x = s^S, \textit{Env} \texttt{ in } C[x^V]) \\ (\texttt{letrec } x = s, y = C[x^S], \textit{Env} \texttt{ in } r) \rightarrow \\ (\texttt{letrec } x = s^S, y = C[x^V], \textit{Env} \texttt{ in } r) \texttt{ if } C \neq [.] \end{array}$

 $(case \ s \ alts)^{S \vee T}
ightarrow (case \ s^S \ alts)^V$

 $(\text{letrec } \boldsymbol{X} = (\lambda \boldsymbol{y}.\boldsymbol{y})(\lambda \boldsymbol{z}.\boldsymbol{z}) \text{ in } \boldsymbol{X} \text{ True})^{\boldsymbol{T}} \rightarrow \\ (\text{letrec } \boldsymbol{X} = (\lambda \boldsymbol{y}.\boldsymbol{y})(\lambda \boldsymbol{z}.\boldsymbol{z}) \text{ in } (\boldsymbol{X} \text{ True})^{\boldsymbol{S}})^{\boldsymbol{V}}$

Marking algorithm

Marking (*unwind*): find a needed subexpression. Notations:

- T top-level expression
- V visited subexpression
- S current (needed) expression

$$\begin{array}{l} (s \ t)^{S \lor T} \to (s^S \ t)^V \\ (\texttt{letrec } \textit{Env} \ \texttt{in} \ t)^T \to (\texttt{letrec } \textit{Env} \ \texttt{in} \ t^S)^V \\ (\texttt{letrec } x = s, \textit{Env} \ \texttt{in} \ C[x^S]) \to (\texttt{letrec } x = s^S, \textit{Env} \ \texttt{in} \ C[x^V]) \\ (\texttt{letrec } x = s, y = C[x^S], \textit{Env} \ \texttt{in} \ r) \to \\ (\texttt{letrec } x = s^S, y = C[x^V], \textit{Env} \ \texttt{in} \ r) \ \texttt{if} \ C \neq [.] \\ (\texttt{case } s \ alts)^{S \lor T} \to (\texttt{case } s^S \ alts)^V \end{array}$$

$$(\text{letrec } X = (\lambda y.y)(\lambda Z.Z) \text{ in } (X \text{ True})^S)^V \rightarrow \\ (\text{letrec } X = (\lambda y.y)(\lambda Z.Z) \text{ in } (X^S \text{ True})^V)^V$$

Marking algorithm

Marking (*unwind*): find a needed subexpression. Notations:

- T top-level expression
- V visited subexpression

• S - current (needed) expression

$$(s t)^{S \lor T} \to (s^S t)^V$$

 $(\text{letrec } Env \text{ in } t)^T \to (\text{letrec } Env \text{ in } t^S)^V$
 $(\text{letrec } x = s, Env \text{ in } C[x^S]) \to (\text{letrec } x = s^S, Env \text{ in } C[x^V])$
 $(\text{letrec } x = s, y = C[x^S], Env \text{ in } r) \to$
 $(\text{letrec } x = s^S, y = C[x^V], Env \text{ in } r) \text{ if } C \neq [.]$
 $(\text{case } s \text{ alts})^{S \lor T} \to (\text{case } s^S \text{ alts})^V$

$$(\text{letrec } x = (\lambda y.y)(\lambda z.z) \text{ in } (x^{S} \text{ True})^{V})^{V} \rightarrow \\ (\text{letrec } x = ((\lambda y.y)(\lambda z.z))^{S} \text{ in } (x^{V} \text{ True})^{V})^{V} \dots$$

Operational semantics rules

Normal order reductions, WHNF

Normal order reduction $s \xrightarrow{no} t$:

- run the marking algorithm on s
- if success, apply the rules so that labels are matched

letrec $x = ((\lambda y.y)^{S}(\lambda z.z))^{V}$ in $(x^{V} \text{ True})^{V})^{V} \xrightarrow{no}$ letrec $x = (\text{letrec } y = \lambda z.z \text{ in } y)$ in (x True)

Weak Head Normal Form (WHNF) - normal form of normal order reduction. Let v (*value*) be $\lambda x.s$ or ($c x_1 ... x_n$). WHNF is:

a value v, or

• letrec *Env* in *v*

Evaluation: $s \xrightarrow{no,*} s'$ where s' is WHNF. Denote: $s \downarrow$.

Contextual preorder

Contextual preorder: $s \leq_c t$ iff $\forall C[\cdot] : C[s] \downarrow \Rightarrow C[t] \downarrow$. Ω is the least element: $\forall s : \Omega \leq_c s$.

Contextual equivalence: $s \sim_c t$ iff $s \leq_c t \wedge t \leq_c s$. (choice True Ω) \sim_c True.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ へ ⊙

Extra transformations

Transformations (for proofs and compiler optimizations)

- reduction rules applied in contexts other than those labeled
- additional rules
- A sample additional rule:

(gc) $(\text{letrec } x = s, Env \text{ in } t) \rightarrow (\text{letrec } Env \text{ in } t)$ if x does not occur in Env nor in t

Proved: transformations preserve may-convergence in all contexts (i.e. are *correct*).

Standardization

Non-deterministic calculus: any sequence of correct reductions preserves may-convergence.

Theorem (Standardization)

If $t \xrightarrow{*} t'$ where t' is a WHNF and the sequence $\xrightarrow{*}$ consists of any sequence of reduction or transformation steps then $t \downarrow$.

(* denotes reflexive transitive closure)

$$t \xrightarrow{no,*|}_{\forall} t'(WHNF)$$

< ロ > < 同 > < 三 > .

"Stop" reduction ⊚ and pseudovalues

We approximate evaluation results by *finite simulation*. Components with a possibility of infinite recursion are replaced by a symbol \odot (read: *Stop*). Denotes potential divergence, i.e. synonym to Ω .

letrec $\mathbf{X} = \lambda \mathbf{y} . \mathbf{X}$ in \mathbf{X} True \rightarrow letrec $\mathbf{X} = \lambda \mathbf{y} . \mathbf{X}$ in \odot True

A *pseudo-value* is an expression built from \odot , constructors and abstractions: (*cons* $\odot \lambda x.x$).

イロト イヨト イヨト イ

An *answer* is a pseudo-value that is not the constant ⊚.

Approximation calculus

Extend the calculus with \odot and *approximation reduction* to compute *sets of answers. s* is a closed expression, for instance letrec $y = \lambda z.y$ in (*cons y y*).

Pre-evaluation of expressions (approximation reduction):

- Start with s' = letrec x = s in x: letrec x = (letrec y = λz.y in (cons y y)) in x
- Evaluate *s'* to WHNF:

letrec $x = (cons y y), y = \lambda z.y$ in (cons y y)

 perform (non-deterministically) any number of *copy* steps: letrec x = (cons y y), y = λz.y in (cons (λz.y) y), letrec x = (cons y y), y = λz.y in (cons (λz.(λz.y)) y), etc.

Approximation calculus

Extend the calculus with \odot and *approximation reduction* to compute *sets of answers*. *s* is a closed expression, for instance letrec $y = (\lambda z. y)$ in (*cons y y*).

Pre-evaluation of expressions (approximation reduction):

- Start with s' = letrec x = s in x: letrec x = (letrec y = λz.y in (cons y y)) in x
- Evaluate s' to WHNF:

letrec $x = (cons y y), y = \lambda z.y$ in (cons y y)

 perform (non-deterministically) any number of *copy* steps: letrec x = (cons y y), y = λz.y in (cons (λz.y) y), letrec x = (cons y y), y = λz.y in (cons (λz.(λz.y) y), etc.

Approximation calculus

Extend the calculus with \odot and *approximation reduction* to compute *sets of answers*. *s* is a closed expression, for instance letrec $y = (\lambda z. y)$ in (*cons y y*).

Pre-evaluation of expressions (approximation reduction):

- Start with s' = letrec x = s in x: letrec x = (letrec y = λz.y in (cons y y)) in x
- Evaluate *s'* to WHNF:

letrec $x = (cons y y), y = \lambda z.y$ in (cons y y)

 perform (non-deterministically) any number of *copy* steps: letrec x = (cons y y), y = λz.y in (cons (λz.y) y), letrec x = (cons y y), y = λz.y in (cons (λz. (λz.y)) y), etc.

Approximation calculus (cont.)

Some results of the previous step: letrec $x = (cons y y), y = \lambda z.y$ in $(cons (\lambda z.y) y),$

letrec $x = (cons \ y \ y), y = \lambda z.y$ in $(cons (\lambda z.\lambda z.y) \ y),$ letrec $x = (cons \ y \ y), y = \lambda z.y$ in $(cons \ y \ (\lambda z.y))$

Approximation reduction (cont.):

remove the top letrec-environment, replace remaining let-bound variables by ⊚:
 (cons (λz.⊙) ⊙), (cons (λz.λz.⊙) ⊙), (cons ⊙ (λz.⊙)), etc.

These are answers ans(s) for

$$s =$$
letrec $y = \lambda z.y$ in (cons y y).

Approximation calculus (cont.)

Some results of the previous step: letrec $x = (cons \ y \ y), y = \lambda z.y$ in $(cons (\lambda z.y) \ y)$, letrec $x = (cons \ y \ y), y = \lambda z.y$ in $(cons (\lambda z.\lambda z.y) \ y)$, letrec $x = (cons \ y \ y), y = \lambda z.y$ in $(cons \ y \ (\lambda z.y))$ Approximation reduction (cont.):

remove the top-letrec-environment, replace remaining let-bound variables by ⊚:
 (cons (λz.⊚) ⊚), (cons (λz.λz.⊚) ⊚), (cons ⊚ (λz.⊚)), etc.

(日) (四) (日) (日) (日)

These are answers ans(s) for

$$s =$$
letrec $y = \lambda z.y$ in (cons y y).

Approximation calculus (cont.)

Some results of the previous step: letrec $x = (cons \ y \ y), y = \lambda z.y$ in $(cons (\lambda z.y) \ y)$, letrec $x = (cons \ y \ y), y = \lambda z.y$ in $(cons (\lambda z.\lambda z.y) \ y)$, letrec $x = (cons \ y \ y), y = \lambda z.y$ in $(cons \ y \ (\lambda z.y))$ Approximation reduction (cont.):

remove the top-letrec-environment, replace remaining let-bound variables by ⊚:
 (cons (λz.⊚) ⊚), (cons (λz.λz.⊚) ⊚), (cons ⊚ (λz.⊙)), etc.

(日) (四) (日) (日) (日)

These are answers ans(s) for

$$s =$$
letrec $y = \lambda z.y$ in (cons y y).

Answers as a finite model of expressions

R[] *reduction contexts* denote a position in an expression where a normal order reduction takes place.

< ロ > < 同 > < 三 >

Theorem

Let *R* be a reduction context, *s* a closed expression, $R[s]\downarrow$. Then there is $v \in ans(s)$ such that $R[v]\downarrow$.

Main ideas of the proof:

$$R[\text{letrec } x = s \text{ in } x] \xrightarrow{n} WHNF$$

$$R[\texttt{letrec } \underset{Env}{\overset{cp,n+1}{\longrightarrow}} R[w] \overset{\odot,*}{\overset{\odot,*}{\longrightarrow}} R[v] \overset{\leq n}{\overset{\longrightarrow}{\longrightarrow}} WHNF$$

- *Env* has labeled bindings derived from x = s
- in *R*[letrec *Env* in *x*], copy all bindings of *Env* into the bound variables *n* + 1 times
- replace the remaining letrec-bound variables by ⊚.
- *R*[*v*]↓ since all the positions affected by reductions in *R*[] have values.

 appears only in unreachable positions.

Answer sets and \leq_c

U - a set of expressions, *t* - an expression. *t* is a *lub (least upper bound)* of *U* iff $\forall u \in U : u \leq_c t$, and for any *s* s.t. $\forall u \in U : u \leq_c s$ it holds that $t \leq_c s$. The expression *t* is called a *contextual lub (club)* of *U*, iff for *C*[]: *C*[*t*] is a lub of $\{C[r] \mid r \in U\}$. $W(t) = ans(t) \cup \{u \mid u \text{ is a } club \text{ of } A \subseteq ans(t)\}$ (some extra conditions given in the paper)

Theorem

Let *s*, *t* be closed expressions. If for all $v \in ans(s)$ there is some $w \in W(t)$ with $v \leq_c w$, then $s \leq_c t$.

Procedure for comparing answer sets

 $s \leq_c t$ if $\forall v \in ans(s) \exists w \in ans(t) \text{ s.t. } v \leq_c w$. For instance, $t = (choice \Omega s) \sim_c s$ since ans(t) = ans(s).

How to compare complex pseudovalues?

- constructors: $(c \ s_1 \dots s_n) \leq_c (c \ t_1 \dots t_n)$ iff $s_i \leq_c t_i$ for all i.
- abstractions: λx.s ≤_c λx.t iff for all closed pseudo-values
 v: (λx.s) v ≤_c (λx.t) v.

Effectiveness of the method

The method provides an effective (finite) procedure for deciding $s \leq_c t$ if the following takes place:

- bounded reductions to WHNF
- comparable answer sets (may be infinite)
- the ability to test equivalence of answers

Conclusions and future work

Conclusions:

We developed and proved correct a finite simulation method for a non-deterministic call-by-need calculus with cyclic bindings. The method provides a procedure for deciding \leq_c and \sim_c relations in a may-convergence framework which is effective if certain conditions hold.

Future work: to extend the method to must-convergence and to work towards general simulation.

Selected Bibliography

- Z. Ariola & W. Klop Equational Term Graph Rewriting, 1996.
- D. Howe Equality in lazy computation systems, 1989
- D. Howe Proving congruence of bisimulation in functional programming languages, 1996
- M. Mann Congruence of Bisimulation in a Non-Deterministic Call-By-Need Lambda Calculus, 2004
- M. Schmidt-Schauss & E. Machkasova A Finite Simulation Method in a Non-Deterministic Call-by-Need Calculus with letrec, constructors and case (Technical Report), 2008