## A Finite Simulation Method in a Non-Deterministic Call-by-Need Lambda-Calculus with letrec, constructors, and case

Manfred Schmidt-Schauss ${ }^{1}$ and Elena Machkasova ${ }^{2}$
${ }^{1}$ Inst. Informatik, J.W. Goethe-University
${ }^{2}$ University of Minnesota, Morris
Rewriting Techniques and Applications (RTA) 2008

## Motivation for finite simulation approach

Proving correctness of compiler transformations is especially challenging for higher-order languages with:

- concurrency
- memory manipulation
- user interactions

Our calculus models a Haskell-like language: letrec, non-determinism, call-by-need, constructors. We aim to prove contextual equivalence of expressions: two expressions are the same if they behave the same in every context (maximal equivalence).

## Motivation for finite simulation approach

Diagram methods for proving correctness of transformations (Plotkin75, Ariola\&Klop96 and later modifications) require closing commutative diagrams - some do not hold, some difficult to prove.

Howe's (Howe89,96) simulation method has been applied to similar calculi (Mann04), but fails on cyclic dependencies.

We propose a finite simulation method. It provides a way to prove contextual equivalence of some expressions based on answer-sets (pre-evaluated expressions).
If computation of answer-sets succeeds at a finite depth, it shows contextual equivalence of expressions.

## Overview: small-step operational semantics

We consider a non-deterministic call-by-need calculus. choice represents non-determinism.
Semantics via normal order reduction: rewrite (small-step) operational semantics.

```
letrec }\boldsymbol{x}=\mathrm{ True, }\boldsymbol{y}=\mathrm{ False, }\boldsymbol{z}=\lambda|.u\mathrm{ in }z(\mathrm{ choice }xy)
letrec Env in (\lambdau.u)(choice x y) }
letrec Env in (\lambdau.u) y }
letrec Env in (\lambdau.u) False }
letrec Env in letrec u=False in u }u\mathrm{ F...
```

where Env stands for $x=$ True, $y=$ False, $z=\lambda u . u$.

## Overview: may-convergence

An expression $t$ may-converges if there is a sequence of normal order steps $t \xrightarrow{*} t^{\prime}$, where $t^{\prime}$ is a normal form: $t \downarrow$. If there is no such sequence then $t \uparrow$ ( $t$ diverges).

Examples:
(choice $\Omega$ True) $\downarrow$
(choice ( $\lambda x y . x)(\lambda x y . y)) \Omega \Omega \uparrow$
Notation: $\Omega=(\lambda x . x x)(\lambda x . x x)$

## Overview: pre-order, contextual equivalence

Let $C[\cdot]$ denote a one-hole context, $C[t]$ - context $C$ filled with an expression $t$ (free variables may be captured).
Contextual pre-order.

$$
s \leq_{c} t \quad \text { iff } \quad \forall C[\cdot]: \quad C[s] \downarrow \Rightarrow C[t] \downarrow
$$

Example: (choice $s \Omega$ ) $\leq_{c} s$.
Contextual equivalence:

$$
s \sim_{c} t \text { iff } s \leq_{c} t \wedge t \leq_{c} s
$$

Example: (choice True False) $\sim_{c}$ (choice False True).

## Overview: the idea of answer-set approach

For an expression $t$ we construct an answer-set ans( $t$ ): a set of all "values" $v$ s.t. $v \leq_{c} t$, where $v$ is built from abstractions and constructors (e.g. lists) and may contain $\Omega$ in place of some letrec-bound variables.
For example, letrec $x=($ cons $1 x)$ in $x$ has answers

$$
\{(\text { cons } 1 \Omega),(\text { cons } 1(\text { cons } 1 \Omega)), \ldots\}
$$

where cons is a list constructor.
Main contribution: we can compare expressions based on $\leq_{c}$ relation of their sets of answers.

## Calculus syntax

The syntax of the calculus is as follows (note: $L_{S}$ in the paper):

$$
\begin{aligned}
E::= & V\left|\left(c E_{1} \ldots E_{m}\right)\right| E_{1} E_{2}|\lambda V . E|\left(\text { choice } E_{1} E_{2}\right) \\
& \mid\left(\text { letrec } V_{1}=E_{1}, \ldots, V_{n}=E_{n} \text { in } E\right) \\
& \mid\left(\operatorname{case} E\left(\text { Pat }_{1} \rightarrow E_{1}\right) \ldots\left(\text { Pat }_{n} \rightarrow E_{n}\right)\right) \\
\text { Pat }::= & \left(c V_{1} \ldots V_{\operatorname{ar}(c)}\right)
\end{aligned}
$$

where $E$ are expressions, $V$ are variables, $c$ is a constructor (each of a fixed arity), Pat denotes a pattern.
case represents pattern-matching - taking apart a constructor expression; exactly one alternative matches.

## Marking algorithm

Marking (unwind): find a needed subexpression. Notations:

- $T$ - top-level expression
- $V$ - visited subexpression
- $S$ - current (needed) expression
$(s t)^{S \vee T} \rightarrow\left(s^{S} t\right)^{V}$
(letrec Env in $t)^{T} \rightarrow\left(\text { letrec Env in } t^{S}\right)^{V}$
(letrec $x=s$, Env in $\left.C\left[x^{S}\right]\right) \rightarrow\left(\right.$ letrec $x=s^{S}$, Env in $C\left[x^{V}\right]$ )
(letrec $x=s, y=C\left[x^{S}\right]$, Env in $r$ ) $\rightarrow$

$$
\text { (letrec } x=s^{s}, y=C\left[x^{v}\right], \text { Env in } r \text { ) if } C \neq[.]
$$

$(\text { case } s \text { alts) })^{S \vee T} \rightarrow\left(\text { case } s^{S} \text { alts }\right)^{V}$
Marking specifies a normal order reduction strategy.

## Marking algorithm

Marking (unwind): find a needed subexpression. Notations:

- $T$ - top-level expression
- $V$ - visited subexpression
- $S$ - current (needed) expression
$(s t)^{S \vee T} \rightarrow\left(s^{S} t\right)^{V}$
(letrec Env in $t)^{T} \rightarrow\left(\text { letrec Env in } t^{S}\right)^{V}$
(letrec $x=s$, Env in $\left.C\left[x^{S}\right]\right) \rightarrow\left(\right.$ letrec $x=s^{S}$, Env in $\left.C\left[x^{V}\right]\right)$
(letrec $x=s, y=C\left[x^{s}\right]$, Env in $r$ ) $\rightarrow$

$$
\text { (letrec } x=s^{s}, y=C\left[x^{v}\right] \text {, Env in } r \text { ) if } C \neq[.]
$$

$(\text { case } s \text { alts })^{S V T} \rightarrow\left(\text { case } s^{S} \text { alts }\right)^{V}$

$$
\begin{aligned}
& (\text { letrec } x=(\lambda y \cdot y)(\lambda z . z) \text { in } x \text { True })^{T} \rightarrow \\
& \quad\left(\text { letrec } x=(\lambda y \cdot y)(\lambda z . z) \text { in }(x \text { True })^{S}\right)^{V}
\end{aligned}
$$

## Marking algorithm

Marking (unwind): find a needed subexpression. Notations:

- $T$ - top-level expression
- $V$ - visited subexpression
- $S$ - current (needed) expression
$(s t)^{S \vee T} \rightarrow\left(s^{S} t\right)^{V}$
(letrec Env in $t)^{T} \rightarrow\left(\text { letrec Env in } t^{S}\right)^{V}$
(letrec $x=s$, Env in $\left.C\left[x^{S}\right]\right) \rightarrow\left(\right.$ letrec $x=s^{S}$, Env in $\left.C\left[x^{V}\right]\right)$
(letrec $x=s, y=C\left[x^{S}\right]$, Env in $r$ ) $\rightarrow$
(letrec $x=s^{s}, y=C\left[x^{V}\right]$, Env in $r$ ) if $C \neq[$.
$(\text { case } s \text { alts) })^{S \vee T} \rightarrow\left(\text { case } s^{S} \text { alts }\right)^{V}$

$$
\begin{aligned}
& \left(\text { letrec } x=(\lambda y \cdot y)(\lambda z . z) \text { in }(x \operatorname{True})^{S}\right)^{V} \rightarrow \\
& \quad\left(\text { letrec } x=(\lambda y \cdot y)(\lambda z . z) \text { in }\left(x^{S} \text { True }\right)^{V}\right)^{V}
\end{aligned}
$$

## Marking algorithm

Marking (unwind): find a needed subexpression. Notations:

- $T$ - top-level expression
- $V$ - visited subexpression
- $S$ - current (needed) expression
$(s t)^{S \vee T} \rightarrow\left(s^{S} t\right)^{V}$
(letrec Env in $t)^{T} \rightarrow\left(\text { letrec Env in } t^{S}\right)^{V}$
(letrec $x=s$, Env in $\left.C\left[x^{S}\right]\right) \rightarrow\left(\right.$ letrec $x=s^{S}$, Env in $\left.C\left[x^{V}\right]\right)$
(letrec $x=s, y=C\left[x^{S}\right]$, Env in $r$ ) $\rightarrow$
(letrec $x=s^{S}, y=C\left[x^{V}\right]$, Env in $r$ ) if $C \neq[$.
$(\text { case } s \text { alts) })^{S \vee T} \rightarrow\left(\text { case } s^{S} \text { alts }\right)^{V}$

$$
\begin{aligned}
& \left(\text { letrec } x=(\lambda y \cdot y)(\lambda z . z) \text { in }\left(x^{S} \operatorname{True}\right)^{V}\right)^{V} \rightarrow \\
& \quad\left(\text { letrec } x=((\lambda y \cdot y)(\lambda z . z))^{S} \text { in }\left(x^{V} \text { True }\right)^{V}\right)^{V} \ldots
\end{aligned}
$$

## Operational semantics rules

(Ibeta)
(cp-in)
$\left((\lambda x . s)^{s} r\right) \rightarrow($ letrec $x=r$ in $s)$
(letrec $x=w^{S}$, Env in $C\left[x^{V}\right]$ )
$\rightarrow($ letrec $x=w$, Env in $C[w])$
where $w$ is $\lambda y . t$ or $\left(c x_{1} \ldots x_{n}\right)$
(cp-e) (letrec $x=w^{S}$, Env, $y=C\left[x^{V}\right]$ in $r$ ) $\rightarrow($ letrec $x=w, E n v, y=C[w]$ in $r)$
where $w$ is $\lambda y . t$ or $\left(c x_{1} \ldots x_{n}\right)$
(llet-in) (letrec Env $v_{1}$ in (letrec Env 2 in $\left.r\right)^{S}$ )
$\rightarrow$ (letrec $E n v_{1}, E n v_{2}$ in $r$ ) (skip more let rules)
(case) $\quad\left(\right.$ case $\left.\left(c t_{1} \ldots t_{n}\right)^{S} \ldots\left(\left(c y_{1} \ldots y_{n}\right) \rightarrow s\right) \ldots\right)$
$\rightarrow\left(\right.$ letrec $y_{1}=t_{1}, \ldots, y_{n}=t_{n}$ in $\left.s\right)$
(choice-I) (choice $s t)^{S \vee T} \rightarrow s$
(choice-r) (choice $s t)^{S \vee T} \rightarrow t$

## Normal order reductions, WHNF

Normal order reduction $s \xrightarrow{n o} t$ :

- run the marking algorithm on $s$
- if success, apply the rules so that labels are matched

$$
\begin{aligned}
& \text { letrec } \left.x=\left((\lambda y \cdot y)^{S}(\lambda z \cdot z)\right)^{V} \text { in }\left(x^{V} \text { True }\right)^{V}\right)^{V} \quad \xrightarrow{n o} \\
& \text { letrec } x=(\text { letrec } y=\lambda z \cdot z \text { in } y) \text { in }(x \text { True })
\end{aligned}
$$

Weak Head Normal Form (WHNF) - normal form of normal order reduction. Let $v$ (value) be $\lambda x$.s or ( $c x_{1} \ldots x_{n}$ ). WHNF is:

- a value $v$, or
- letrec Env in v

Evaluation: $s \xrightarrow{n 0, *} s^{\prime}$ where $s^{\prime}$ is WHNF. Denote: $s \downarrow$.

## Contextual preorder

Contextual preorder: $s \leq_{c} t$ iff $\forall C[\cdot]: \quad C[s] \downarrow \Rightarrow C[t] \downarrow$. $\Omega$ is the least element: $\forall s: \Omega \leq_{c} s$.

Contextual equivalence: $s \sim_{c} t$ iff $s \leq_{c} t \wedge t \leq_{c} s$.
(choice True $\Omega$ ) $\sim_{c}$ True.

## Extra transformations

Transformations (for proofs and compiler optimizations)

- reduction rules applied in contexts other than those labeled
- additional rules

A sample additional rule:
(gc) (letrec $x=s$, Env in $t) \rightarrow$ (letrec Env in $t$ ) if $x$ does not occur in Env nor in $t$

Proved: transformations preserve may-convergence in all contexts (i.e. are correct).

## Standardization

Non-deterministic calculus: any sequence of correct reductions preserves may-convergence.

## Theorem (Standardization)

If $t \xrightarrow{*} t^{\prime}$ where $t^{\prime}$ is a WHNF and the sequence $\xrightarrow{*}$ consists of any sequence of reduction or transformation steps then $t \downarrow$.
(* denotes reflexive transitive closure)


## "Stop" reduction ๑ and pseudovalues

We approximate evaluation results by finite simulation.
Components with a possibility of infinite recursion are replaced by a symbol © (read: Stop). Denotes potential divergence, i.e. synonym to $\Omega$.
letrec $x=\lambda y . x$ in $x$ True $\rightarrow$ letrec $x=\lambda y . x$ in © True
A pseudo-value is an expression built from $\odot$, constructors and abstractions: (cons © $\lambda x . x$ ).
An answer is a pseudo-value that is not the constant ©.

## Approximation calculus

Extend the calculus with © and approximation reduction to compute sets of answers. $s$ is a closed expression, for instance letrec $y=\lambda z . y$ in (cons y $y$ ).
Pre-evaluation of expressions (approximation reduction):

- Start with $s^{\prime}=$ letrec $x=s$ in $x$ : letrec $x=($ letrec $y=\lambda z . y$ in $($ cons $y y))$ in $x$
- Evaluate $s^{\prime}$ to WHNF:

$$
\text { letrec } x=(\text { cons } y y), y=\lambda z . y \text { in }(\text { cons } y y)
$$

- perform (non-deterministically) any number of copy steps: letrec $x=($ cons $y y), y=\lambda z . y$ in (cons $(\lambda z . y) y)$, letrec $x=($ cons $y y), y=\lambda z . y$ in $($ cons $(\lambda z .(\lambda z . y)) y)$, etc.


## Approximation calculus

Extend the calculus with $\odot$ and approximation reduction to compute sets of answers. $s$ is a closed expression, for instance letrec $y=(\lambda z . y)$ in (cons $y y$ ).
Pre-evaluation of expressions (approximation reduction):

- Start with $s^{\prime}=$ letrec $x=s$ in $x$ : letrec $x=($ letrec $y=\lambda z . y$ in $($ cons $y y))$ in $x$
- Evaluate $s^{\prime}$ to WHNF:
letrec $x=($ cons $y y), y=\lambda z . y$ in (cons $y y)$
- perform (non-deterministically) any number of copy steps: letrec $x=($ cons $y y), y=\lambda z . y$ in $($ cons $(\lambda z . y) y)$, letrec $x=($ cons $y$ y), $y=\lambda z . y$ in $($ cons $(\lambda z .(\lambda z . y) y)$, etc.


## Approximation calculus

Extend the calculus with $\odot$ and approximation reduction to compute sets of answers. $s$ is a closed expression, for instance letrec $y=(\lambda z . y)$ in (cons $y y$ ).
Pre-evaluation of expressions (approximation reduction):

- Start with $s^{\prime}=$ letrec $x=s$ in $x$ : letrec $x=($ letrec $y=\lambda z . y$ in $($ cons $y y))$ in $x$
- Evaluate $s^{\prime}$ to WHNF:
letrec $x=($ cons $y y), y=\lambda z . y$ in (cons $y y)$
- perform (non-deterministically) any number of copy steps: letrec $x=($ cons $y y), y=\lambda z . y$ in $($ cons $(\lambda z . y) y)$, letrec $x=($ cons $y y), y=\lambda z . y$ in $(\operatorname{cons}(\lambda z .(\lambda z \cdot y)) y)$, etc.


## Approximation calculus (cont.)

Some results of the previous step:
letrec $x=($ cons $y y), y=\lambda z . y$ in $($ cons $(\lambda z . y) y)$,
letrec $x=($ cons $y y), y=\lambda z . y$ in $(\operatorname{cons}(\lambda z . \lambda z . y) y)$,
letrec $x=($ cons $y y), y=\lambda z . y$ in $($ cons $y(\lambda z . y))$
Approximation reduction (cont.):

- remove the top letrec-environment, replace remaining let-bound variables by ©: (cons ( $\lambda z . \odot) \odot)$, (cons ( $\lambda z . \lambda z . \odot) \odot),($ cons ○ ( $\lambda z . \odot)$ ), etc.
These are answers ans(s) for $s=$ letrec $y=\lambda z . y$ in (cons $y y)$.


## Approximation calculus (cont.)

Some results of the previous step:
letrec $x=($ cons $y y), y=\lambda z . y$ in $(\operatorname{cons}(\lambda z . y) y)$,
letrec $x=($ cons $y y), y=\lambda z . y$ in $(\operatorname{cons}(\lambda z . \lambda z . y) y)$,
letrec $x=($ cons $y y), y=\lambda z . y$ in $($ cons $y(\lambda z . y))$
Approximation reduction (cont.):

- remove the top-letrec-environment, replace remaining let-bound variables by ©: (cons ( $\lambda z . \odot) \odot)$, (cons ( $\lambda z . \lambda z . \odot) \odot),($ cons ○ ( $\lambda z . \odot)$ ), etc.
These are answers ans(s) for $s=$ letrec $y=\lambda z . y$ in (cons $y y)$.


## Approximation calculus (cont.)

Some results of the previous step:
letrec $x=($ cons $y y), y=\lambda z . y$ in (cons $(\lambda z . y) y)$,
letrec $x=($ cons $y y), y=\lambda z . y$ in $(\operatorname{cons}(\lambda z . \lambda z . y) y)$,
letrec $x=($ cons $y y), y=\lambda z . y$ in $($ cons $y(\lambda z . y))$
Approximation reduction (cont.):

- remove the top-letrec-environment, replace remaining let-bound variables by ©: (cons ( $\lambda z . \odot) \odot)$, (cons ( $\lambda z . \lambda z . \odot) \odot),($ cons ○ ( $\lambda z . \odot)$ ), etc.
These are answers ans(s) for $s=$ letrec $y=\lambda z . y$ in (cons $y y)$.


## Answers as a finite model of expressions

$R[]$ reduction contexts denote a position in an expression where a normal order reduction takes place.

## Theorem

Let $R$ be a reduction context, s a closed expression, $R[s] \downarrow$.
Then there is $v \in \operatorname{ans}(s)$ such that $R[v] \downarrow$.

## Main ideas of the proof:

$$
\begin{aligned}
& R[\text { letrec } x=\sin x] \xrightarrow{n} \text { WHNF } \\
& R[\text { letrec Env in } x] \xrightarrow{c p, n+1} R[w] \xrightarrow{\odot_{, *}} R[v] \xrightarrow{\leq n} \text { WHNF }
\end{aligned}
$$

- Env has labeled bindings derived from $x=s$
- in R[letrec Env in $x$ ], copy all bindings of Env into the bound variables $n+1$ times
- replace the remaining letrec-bound variables by $\odot$.
- $R[v] \downarrow$ since all the positions affected by reductions in $R[]$ have values. © appears only in unreachable positions.


## Answer sets and $\leq_{c}$

$U$ - a set of expressions, $t$ - an expression. $t$ is a lub (least upper bound) of $U$ iff $\forall u \in U: u \leq_{c} t$, and for any $s$ s.t. $\forall u \in U: u \leq_{c} s$ it holds that $t \leq_{c} s$.
The expression $t$ is called a contextual lub (club) of $U$, iff for $C[]: C[t]$ is a lub of $\{C[r] \mid r \in U\}$. $W(t)=\operatorname{ans}(t) \cup\{u \mid u$ is a club of $A \subseteq \operatorname{ans}(t)\}$ (some extra conditions given in the paper)

## Theorem

Let $s, t$ be closed expressions. If for all $v \in$ ans(s) there is some $w \in W(t)$ with $v \leq_{c} w$, then $s \leq_{c} t$.

## Procedure for comparing answer sets

$s \leq_{c} t$ if $\forall v \in \operatorname{ans}(s) \exists w \in \operatorname{ans}(t)$ s.t. $v \leq_{c} w$.
For instance, $t=($ choice $\Omega s) \sim_{c} s$ since ans $(t)=\operatorname{ans}(s)$.
How to compare complex pseudovalues?

- constructors: $\left(c s_{1} \ldots s_{n}\right) \leq_{c}\left(c t_{1} \ldots t_{n}\right)$ iff $s_{i} \leq_{c} t_{i}$ for all $i$.
- abstractions: $\lambda x . s \leq_{c} \lambda x . t$ iff for all closed pseudo-values $v:(\lambda x . s) v \leq_{c}(\lambda x . t) v$.


## Effectiveness of the method

The method provides an effective (finite) procedure for deciding $s \leq_{c} t$ if the following takes place:

- bounded reductions to WHNF
- comparable answer sets (may be infinite)
- the ability to test equivalence of answers


## Conclusions and future work

Conclusions:
We developed and proved correct a finite simulation method for a non-deterministic call-by-need calculus with cyclic bindings. The method provides a procedure for deciding $\leq_{c}$ and $\sim_{c}$ relations in a may-convergence framework which is effective if certain conditions hold.
Future work: to extend the method to must-convergence and to work towards general simulation.

## Selected Bibliography

- Z. Ariola \& W. Klop Equational Term Graph Rewriting, 1996.
- D. Howe Equality in lazy computation systems, 1989
- D. Howe Proving congruence of bisimulation in functional programming languages, 1996
- M. Mann Congruence of Bisimulation in a Non-Deterministic Call-By-Need Lambda Calculus, 2004
- M. Schmidt-Schauss \& E. Machkasova A Finite Simulation Method in a Non-Deterministic Call-by-Need Calculus with letrec, constructors and case (Technical Report), 2008

