
Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

A Finite Simulation Method in a
Non-Deterministic Call-by-Need

Lambda-Calculus with letrec, constructors, and
case

Manfred Schmidt-Schauss1 and Elena Machkasova2

1Inst. Informatik, J.W. Goethe-University

2University of Minnesota, Morris

Rewriting Techniques and Applications (RTA) 2008

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Motivation for finite simulation approach

Proving correctness of compiler transformations is especially
challenging for higher-order languages with:

concurrency
memory manipulation
user interactions

Our calculus models a Haskell-like language:
letrec, non-determinism, call-by-need, constructors.
We aim to prove contextual equivalence of expressions:
two expressions are the same if they behave the same in every
context (maximal equivalence).

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Motivation for finite simulation approach

Diagram methods for proving correctness of transformations
(Plotkin75, Ariola&Klop96 and later modifications) require
closing commutative diagrams - some do not hold, some
difficult to prove.

Howe‘s (Howe89,96) simulation method has been applied to
similar calculi (Mann04), but fails on cyclic dependencies.

We propose a finite simulation method. It provides a way to
prove contextual equivalence of some expressions based on
answer-sets (pre-evaluated expressions).

If computation of answer-sets succeeds at a finite depth, it
shows contextual equivalence of expressions.

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Overview: small-step operational semantics

We consider a non-deterministic call-by-need calculus.
choice represents non-determinism.
Semantics via normal order reduction:
rewrite (small-step) operational semantics.

letrec x = True, y = False, z = λu.u in z(choice x y) →
letrec Env in (λu.u) (choice x y) →
letrec Env in (λu.u) y →
letrec Env in (λu.u) False→
letrec Env in letrec u = False in u → . . .

where Env stands for x = True, y = False, z = λu.u.

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Overview: may-convergence

An expression t may-converges if there is a sequence of
normal order steps t ∗−→ t ′, where t ′ is a normal form: t↓.
If there is no such sequence then t↑ (t diverges).

Examples:

(choice Ω True)↓

(choice (λxy .x) (λxy .y))ΩΩ↑

Notation: Ω = (λx .xx)(λx .xx)

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Overview: pre-order, contextual equivalence

Let C[·] denote a one-hole context, C[t] - context C filled with
an expression t (free variables may be captured).
Contextual pre-order:

s ≤c t iff ∀C[·] : C[s]↓ ⇒ C[t]↓

Example: (choice s Ω) ≤c s.
Contextual equivalence:

s ∼c t iff s ≤c t ∧ t ≤c s

Example: (choice True False) ∼c (choice False True).

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Overview: the idea of answer-set approach

For an expression t we construct an answer-set ans(t): a set of
all “values” v s.t. v ≤c t , where v is built from abstractions and
constructors (e.g. lists) and may contain Ω in place of some
letrec-bound variables.
For example, letrec x = (cons 1 x) in x has answers

{(cons 1 Ω), (cons 1 (cons 1 Ω)), . . . }

where cons is a list constructor.
Main contribution: we can compare expressions based on ≤c
relation of their sets of answers.

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Calculus syntax

The syntax of the calculus is as follows (note: LS in the paper):

E ::= V | (c E1 . . . Em) | E1 E2 | λ V .E | (choice E1 E2)

| (letrec V1 = E1, . . . , Vn = En in E)

| (case E (Pat1 → E1) . . . (Patn → En))

Pat ::= (c V1 . . . Var(c))

where E are expressions, V are variables, c is a constructor
(each of a fixed arity), Pat denotes a pattern.
case represents pattern-matching - taking apart a constructor
expression; exactly one alternative matches.

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Marking algorithm

Marking (unwind): find a needed subexpression. Notations:
T - top-level expression
V - visited subexpression
S - current (needed) expression

(s t)S∨T → (sS t)V

(letrec Env in t)T → (letrec Env in tS)V

(letrec x = s, Env in C[xS]) → (letrec x = sS, Env in C[xV])

(letrec x = s, y = C[xS], Env in r) →
(letrec x = sS, y = C[xV], Env in r) if C 6= [.]

(case s alts)S∨T → (case sS alts)V

Marking specifies a normal order reduction strategy.

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Marking algorithm

Marking (unwind): find a needed subexpression. Notations:
T - top-level expression
V - visited subexpression
S - current (needed) expression

(s t)S∨T → (sS t)V

(letrec Env in t)T → (letrec Env in tS)V

(letrec x = s, Env in C[xS]) → (letrec x = sS, Env in C[xV])

(letrec x = s, y = C[xS], Env in r) →
(letrec x = sS, y = C[xV], Env in r) if C 6= [.]

(case s alts)S∨T → (case sS alts)V

(letrec x = (λy .y)(λz.z) in x True)T →
(letrec x = (λy .y)(λz.z) in (x True)S)V

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Marking algorithm

Marking (unwind): find a needed subexpression. Notations:
T - top-level expression
V - visited subexpression
S - current (needed) expression

(s t)S∨T → (sS t)V

(letrec Env in t)T → (letrec Env in tS)V

(letrec x = s, Env in C[xS]) → (letrec x = sS, Env in C[xV])

(letrec x = s, y = C[xS], Env in r) →
(letrec x = sS, y = C[xV], Env in r) if C 6= [.]

(case s alts)S∨T → (case sS alts)V

(letrec x = (λy .y)(λz.z) in (x True)S)V →
(letrec x = (λy .y)(λz.z) in (xS True)V)V

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Marking algorithm

Marking (unwind): find a needed subexpression. Notations:
T - top-level expression
V - visited subexpression
S - current (needed) expression

(s t)S∨T → (sS t)V

(letrec Env in t)T → (letrec Env in tS)V

(letrec x = s, Env in C[xS]) → (letrec x = sS, Env in C[xV])

(letrec x = s, y = C[xS], Env in r) →
(letrec x = sS, y = C[xV], Env in r) if C 6= [.]

(case s alts)S∨T → (case sS alts)V

(letrec x = (λy .y)(λz.z) in (xS True)V)V →
(letrec x = ((λy .y)(λz.z))S in (xV True)V)V . . .

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Operational semantics rules

(lbeta) ((λx .s)S r) → (letrec x = r in s)

(cp-in) (letrec x = wS, Env in C[xV])
→ (letrec x = w , Env in C[w])

where w is λy .t or (c x1 . . . xn)

(cp-e) (letrec x = wS, Env , y = C[xV] in r)
→ (letrec x = w , Env , y = C[w] in r)

where w is λy .t or (c x1 . . . xn)

(llet-in) (letrec Env1 in (letrec Env2 in r)S)
→ (letrec Env1, Env2 in r) (skip more let rules)

(case) (case (c t1 . . . tn)S . . . ((c y1 . . . yn) → s) . . .)
→ (letrec y1 = t1, . . . , yn = tn in s)

(choice-l) (choice s t)S∨T → s
(choice-r) (choice s t)S∨T → t

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Normal order reductions, WHNF

Normal order reduction s no−→ t :
run the marking algorithm on s
if success, apply the rules so that labels are matched

letrec x = ((λy .y)S(λz.z))V in (xV True)V)V no−→
letrec x = (letrec y = λz.z in y) in (x True)

Weak Head Normal Form (WHNF) - normal form of normal
order reduction. Let v (value) be λx .s or (c x1 . . . xn). WHNF is:

a value v , or
letrec Env in v

Evaluation: s
no,∗−−→ s′ where s′ is WHNF. Denote: s↓.

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Contextual preorder

Contextual preorder: s ≤c t iff ∀C[·] : C[s]↓ ⇒ C[t]↓.
Ω is the least element: ∀s : Ω ≤c s.

Contextual equivalence: s ∼c t iff s ≤c t ∧ t ≤c s.
(choice True Ω) ∼c True.

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Extra transformations

Transformations (for proofs and compiler optimizations)
reduction rules applied in contexts other than those labeled
additional rules

A sample additional rule:

(gc) (letrec x = s, Env in t) → (letrec Env in t)
if x does not occur in Env nor in t

Proved: transformations preserve may-convergence in all
contexts (i.e. are correct).

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Standardization

Non-deterministic calculus: any sequence of correct reductions
preserves may-convergence.

Theorem (Standardization)

If t ∗−→ t ′ where t ′ is a WHNF and the sequence ∗−→ consists of
any sequence of reduction or transformation steps then t↓.

(∗ denotes reflexive transitive closure)

t ∗ //

no,∗
���
�
� t ′(WHNF)

t ′′(WHNF)

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

“Stop” reduction } and pseudovalues

We approximate evaluation results by finite simulation.
Components with a possibility of infinite recursion are replaced
by a symbol } (read: Stop). Denotes potential divergence, i.e.
synonym to Ω.

letrec x = λy .x in x True→ letrec x = λy .x in } True

A pseudo-value is an expression built from }, constructors and
abstractions: (cons } λx .x).
An answer is a pseudo-value that is not the constant }.

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Approximation calculus

Extend the calculus with } and approximation reduction to
compute sets of answers. s is a closed expression, for instance
letrec y = λz.y in (cons y y).
Pre-evaluation of expressions (approximation reduction):

Start with s′ = letrec x = s in x :
letrec x = (letrec y = λz.y in (cons y y)) in x
Evaluate s′ to WHNF:
letrec x = (cons y y), y = λz.y in (cons y y)

perform (non-deterministically) any number of copy steps:
letrec x = (cons y y), y = λz.y in (cons (λz.y) y),
letrec x = (cons y y), y = λz.y in (cons (λz.(λz.y)) y),
etc.

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Approximation calculus

Extend the calculus with } and approximation reduction to
compute sets of answers. s is a closed expression, for instance
letrec y = (λz.y) in (cons y y).
Pre-evaluation of expressions (approximation reduction):

Start with s′ = letrec x = s in x :
letrec x = (letrec y = λz.y in (cons y y)) in x
Evaluate s′ to WHNF:
letrec x = (cons y y), y = λz.y in (cons y y)

perform (non-deterministically) any number of copy steps:
letrec x = (cons y y), y = λz.y in (cons (λz.y) y),
letrec x = (cons y y), y = λz.y in (cons (λz.(λz.y) y),
etc.

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Approximation calculus

Extend the calculus with } and approximation reduction to
compute sets of answers. s is a closed expression, for instance
letrec y = (λz.y) in (cons y y).
Pre-evaluation of expressions (approximation reduction):

Start with s′ = letrec x = s in x :
letrec x = (letrec y = λz.y in (cons y y)) in x
Evaluate s′ to WHNF:
letrec x = (cons y y), y = λz.y in (cons y y)

perform (non-deterministically) any number of copy steps:
letrec x = (cons y y), y = λz.y in (cons (λz.y) y),
letrec x = (cons y y), y = λz.y in (cons (λz. (λz.y)) y),
etc.

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Approximation calculus (cont.)

Some results of the previous step:
letrec x = (cons y y), y = λz.y in (cons (λz.y) y),
letrec x = (cons y y), y = λz.y in (cons (λz.λz.y) y),
letrec x = (cons y y), y = λz.y in (cons y (λz.y))
Approximation reduction (cont.):

remove the top letrec-environment, replace remaining
let-bound variables by }:
(cons (λz.}) }), (cons (λz.λz.}) }), (cons } (λz.})),
etc.

These are answers ans(s) for
s = letrec y = λz.y in (cons y y).

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Approximation calculus (cont.)

Some results of the previous step:
letrec x = (cons y y), y = λz.y in (cons (λz.y) y),
letrec x = (cons y y), y = λz.y in (cons (λz.λz.y) y),
letrec x = (cons y y), y = λz.y in (cons y (λz.y))
Approximation reduction (cont.):

remove the top-letrec-environment, replace remaining
let-bound variables by }:
(cons (λz.}) }), (cons (λz.λz.}) }), (cons } (λz.})),
etc.

These are answers ans(s) for
s = letrec y = λz.y in (cons y y).

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Approximation calculus (cont.)

Some results of the previous step:
letrec x = (cons y y), y = λz.y in (cons (λz.y) y),
letrec x = (cons y y), y = λz.y in (cons (λz.λz.y) y),
letrec x = (cons y y), y = λz.y in (cons y (λz.y))
Approximation reduction (cont.):

remove the top-letrec-environment, replace remaining
let-bound variables by }:
(cons (λz.}) }), (cons (λz.λz.}) }), (cons } (λz.})),
etc.

These are answers ans(s) for
s = letrec y = λz.y in (cons y y).

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Answers as a finite model of expressions

R[] reduction contexts denote a position in an expression where
a normal order reduction takes place.

Theorem
Let R be a reduction context, s a closed expression, R[s]↓.
Then there is v ∈ ans(s) such that R[v]↓.

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Main ideas of the proof:

R[letrec x = s in x]
n // WHNF

R[letrec Env in x]
cp,n+1 // R[w]

},∗ // R[v]
≤n // WHNF

Env has labeled bindings derived from x = s
in R[letrec Env in x], copy all bindings of Env into the
bound variables n + 1 times
replace the remaining letrec-bound variables by }.
R[v]↓ since all the positions affected by reductions in R[]
have values. } appears only in unreachable positions.

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Answer sets and ≤c

U - a set of expressions, t - an expression. t is a lub (least
upper bound) of U iff ∀u ∈ U : u ≤c t , and for any s s.t.
∀u ∈ U : u ≤c s it holds that t ≤c s.
The expression t is called a contextual lub (club) of U, iff for
C[]: C[t] is a lub of {C[r] | r ∈ U}.
W (t) = ans(t) ∪ {u | u is a club of A ⊆ ans(t)} (some extra
conditions given in the paper)

Theorem
Let s, t be closed expressions. If for all v ∈ ans(s) there is
some w ∈ W (t) with v ≤c w, then s ≤c t .

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Procedure for comparing answer sets

s ≤c t if ∀v ∈ ans(s) ∃w ∈ ans(t) s.t. v ≤c w .
For instance, t = (choice Ω s) ∼c s since ans(t) = ans(s).

How to compare complex pseudovalues?
constructors: (c s1 . . . sn) ≤c (c t1 . . . tn) iff si ≤c ti for all i .
abstractions: λx .s ≤c λx .t iff for all closed pseudo-values
v : (λx .s) v ≤c (λx .t) v .

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Effectiveness of the method

The method provides an effective (finite) procedure for deciding
s ≤c t if the following takes place:

bounded reductions to WHNF
comparable answer sets (may be infinite)
the ability to test equivalence of answers

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Conclusions and future work

Conclusions:
We developed and proved correct a finite simulation method for
a non-deterministic call-by-need calculus with cyclic bindings.
The method provides a procedure for deciding ≤c and ∼c
relations in a may-convergence framework which is effective if
certain conditions hold.
Future work: to extend the method to must-convergence and to
work towards general simulation.

Motivation and Overview
The non-deterministic call-by-need calculus

Pre-evaluation of expressions
Conclusions and future work

Selected Bibliography

Z. Ariola & W. Klop Equational Term Graph Rewriting,
1996.
D. Howe Equality in lazy computation systems, 1989
D. Howe Proving congruence of bisimulation in functional
programming languages, 1996
M. Mann Congruence of Bisimulation in a
Non-Deterministic Call-By-Need Lambda Calculus, 2004
M. Schmidt-Schauss & E. Machkasova A Finite Simulation
Method in a Non-Deterministic Call-by-Need Calculus with
letrec, constructors and case (Technical Report), 2008

	Motivation and Overview
	The non-deterministic call-by-need calculus
	Pre-evaluation of expressions
	Conclusions and future work

