
The Observer Effect of Profiling on Dynamic Java Optimizations

Elena Machkasova
University of Minnesota, Morris

elenam@morris.umn.edu

Kevin Arhelger
University of Minnesota, Morris
arhel005@morris.umn.edu

Fernando Trinciante
University of Minnesota, Morris

trinc002@morris.umn.edu

Abstract
We show that the bytecode injection approach used in com-
mon Java profilers, such as HPROF and JProfiler, disables
some program optimizations that are performed when the
same program is running without a profiler. This behavior is
present in both the client and the server mode of the HotSpot
JVM.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—optimization,run-time environ-
ments; D.2.8 [Software Engineering]: Metric—performance
measures

General Terms Measurement, Performance

Keywords Java,HotSpot,JVM, profiler,HPROF,inlining,dead
code elimination

1. Introduction
In a traditional implementation JavaTMprograms are com-
piled to bytecodes and then ran by a Java Virtual Machine
(JVM). Because of the need to dynamically load and reload
Java classes, most Java optimizations are performed dynam-
ically by Just-in-Time compilers (JITs). Most modern JITs
employ an adaptive compilation approaches when only fre-
quently executed code (so-called hot spots) gets compiled to
native code and/or optimized. A JIT-equipped JVM is a so-
phisticated system that achieves significant speed improve-
ments. However, detecting specific program optimizations in
this complex run-time environment is very challenging.

A common tool for monitoring a program performance
is a profiler. Many profilers for Java, such as HPROF and
JProfiler, use a technique called bytecode injection (see sec-
tion 2.2) to keep track of methods being executed. While
profilers are extremely useful for monitoring memory usage,
garbage collection, and other important aspects of run-time
behavior, we show that they also have an “observer effect”

Copyright is held by the author/owner(s).
OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
ACM 978-1-60558-768-4/09/10.

on programs: a mere use of a profiler may disable some
program optimizations, such as dead code elimination and
method inlining, that are performed when the program is
running without profiling.

We use small Java sample programs in which some parts
of code trigger the dynamic optimizations in question. To
prove that the optimizations take place, we time the pro-
grams and compare them with “hand-optimized” versions of
the programs Then we run the same programs with a profiler
and study its output and timing. We show that while the opti-
mizations take place for a non-profiled program, they are not
happening when the program is being profiled. Our observa-
tions are also applicable to other bytecode-based languages,
such as JRuby and Jython, and to more languages if their
profilers employ a similar technique.

2. Background
In this project we used Java HotSpotTMJVM by Sun Mi-
crosystems in both the client and the server mode [3]. We
used HPROF [2] and JProfiler by ej-technologies.

2.1 Overview of HotSpot optimizations
The key feature of HotSpot JVM is that it starts each method
by just interpreting its bytecodes. It later compiles to native
code and/or optimizes only those methods that are executed
over a specified number of times (known as compilation
threshold). By default this threshold is 1500 in the client
mode and 10000 in the server mode. A method needs to get
over the threshold to get all benefits of dynamic compilation.
Executing methods enough times to get over the threshold is
called JVM warmup. In our examples the large number of
method calls guarantees that the threshold is reached.

2.2 Overview of Java Profiling
A profiler obtains some method execution information by
periodically sampling the stack. However, this information is
inaccurate since it does not detect what happens in-between
the sample points. An alternative bytecode injection ap-
proach inserts a small sequence of bytecode instructions
at the beginning and end of each method to record the time
spent in the method. HPROF and JProfiler use this approach.



run Complex (S) Easy (S) Hand (S) Complex (C) Easy (C) Hand (C)
Unix 0.282 0.284 0.282 6.446 6.45 6.456

Unix, -XX:-Inline 11.92 14.06 0.28 29.878 18.174 6.372
Unix, hprof (fewer loops) 4.634 4.876 0.176 4.92 4.64 0.204

Windows 0.43 0.474 0.45 7.982 8.05 7.972
Windows, -XX:-Inline 21.578 20.706 0.422 27.048 26.992 7.864

Windows, hprof (fewer loops) 5.882 5.268 0.244 5.482 5.242 0.252

Table 1. Mean runtimes for inlining (in seconds): server (S) and client (C)

3. Tests and Results
Detecting program optimizations is challenging since very
little run-time information is available from a JVM.

We tested our sample programs in two different environ-
ments:

• Linux workstation with AMD AthlonTM64 Processor
running Fedora Core 7.

• Lenovo Thinkpad T42p with Intel Pentium MTMProcessor
running Windows XP SP3.

We used Sun JDK 1.6.0 04. Our sample programs repeat
the method or the code that we are studying a very large
number of times in a loop (2147483647 for inlining exam-
ples) to produce total running times of several seconds. This
makes differences between different running times clearly
observable and JVM startup and warmup times insignificant.
We repeat all tests 6 times, drop the first run since it takes ex-
tra time for memory allocation for the JVM, and record the
mean of the remaining 5 runs.

When using a profiler, we had to reduce the number of
loops because of the timing overhead of a profiler. Thus the
profiled results are comparable to each other but not compa-
rable to non-profiled results in terms of absolute times.

We wrote three small programs that perform the same
task: repeatedly increment a variable. Two of them call a
method to accomplish this task; they differ in the complex-
ity level of the method. EasyInline has a simple method
return1 that just returns 1. It is called in a loop to incre-
ment the instance variable counter:

for(int i=0;i<2147483647;i++)
counter += return1();

ComplexInline has a more convoluted method

public int addCount(int add) {
add=add+1; return add; }

to accomplishes the same task; it is called in a similar loop
as in EasyInline. HandInline has the functionality of
the method hand-inlined directly into the loop:

for(int i=0;i<2147483647;i++) counter++;

The test results are summarized in table 2.1. While the ab-
solute times differ for the Linux workstation and for Win-
dows system, the pattern is the same. When no flags are
specified, the three examples run in the same time. The

two programs that call a method have the same runtime as
the hand-inlined program, indicating that the method is in-
lined. This is confirmed by running the same three exam-
ples with -XX:-Inline flag to tunr off JIT inlining: the
hand-inlined version does not change its running time, but
the other two programs increase their time drastically.

When the programs are profiled, however, the methods
that are supposed to be inlined show up in the profiling log,
e.g. HPROF log for EasyInline (client mode, Linux):

1 60.31% 60.31% ... EasyInline.method1
2 38.72% 99.03% ... EasyInline.return1

method1 is the method that contains the main loop. Here
the first percentage value is the percent of time the method
is being executed, and the second number is the combined
percent of the top methods up to the given one. The other
profiling logs also show that the method that was supposed
to be inlined is still in the second place in the log. Note that
the profiled runs are much faster for the hand-inlined version
than for the other two (see table 2.1), which is another
indication that inlining does not happen. JProfiler results
have the same pattern as HPROF. We also observed a similar
effect of profiling for dead code elimination, see [1].

4. Conclusions and Future Work
We have shown that bytecode injection in a profiler has an
“observer effect”, i.e. it changes the performance of the pro-
gram simply by monitoring its behavior. This has signifi-
cant impilcations for software developers who use profilers
for performance tuning. Alternative methods for detecting
the optimizations inlclude JVM flags that may display some
relevant information, such as LogCompilation added in
Java 1.6. However, their usefulness needs to be checked, and
they require Unlock Diagnostics option that may itself
have an “observer effect”.

References
[1] K. Arhelger, F. Trinciante, and E. Machkasova. Use of profilers

for studying java dynamic optimizations. Proceedings of
Midwest Instruction and Computing Symposium (MICS), 2009.

[2] K. O’Hair. HPROF: A heap/cpu profiling tool in j2se 5.0. Sun
Microsystems, java.sun.com, 2004.

[3] Sun Developer Network. The Java HotSpot performance
engine architecture. Sun Microsystems, 2007.


