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Clojure in an introductory course

Developed in 2007 by Rich Hickey

Member of the Lisp family

Felleisen et al found Lisp languages to be useful in
introductory courses

Current UMM course uses a Lisp language
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Motivations for the project

ClojurEd

ongoing project at UMM
introduce Clojure in an introductory course

Our work focuses on error messages in Clojure

error messages are a useful learning tool
focus on usability
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Overview of Clojure

Dynamically typed

Data types immutable by default

Functional

Runs on the Java Virtual Machine (JVM)

Read-eval-print-loop (REPL)

interactive environment
useful for development and debugging
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Prefix notation

Clojure uses prefix notation

parentheses
parameters
(<function-name> <argument 1> <argument 2>)

+ is a built-in function, not an operator

(+ 5 5)

-> 10
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Defining functions and variables

def can be used to define variables
(def my-string "Hello World")

my-string

-> "Hello World"

defn can be used to define functions
(defn increment-number [number] (+ number 1))

(increment-number 2)

-> 3
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Collections

All collections can contain any number of values of any data
type

lists
(1 2 "foo" :a 9 "bar")

hashmaps (key-value pairs)
{:a 1, :b 2, :c 3}
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Anonymous functions

Anonymous functions are a way to implement a function on
the fly, and use it only once

map takes a function and a collection as arguments, and
applies the function to the entire collection

(map (fn [number] (+ number 1)) ‘(0 1 2 3))

-> (1 2 3 4)
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Lazy sequences

Only a needed portion of a sequence is evaluated

take takes the first n elements of a collection
range returns an infinite sequence of non-negative integers
beginning at 0
(take 10 (range))

-> (0 1 2 3 4 5 6 7 8 9)

Fibonacci sequence
(1 1 2 3 5 8 13 ...)
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Clojure error messages: background

Error messages should be:

helpful for debugging
easy to understand
not intimidating

Clojure error messages are confusing
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Clojure error messages: examples

EOF while reading, starting at line 3,

compiling:(compilation_errors/eof.clj:4:1)

IllegalArgumentException Parameter declaration

* should be a vector

clojure.core/assert-valid-fdecl (core.clj:6842)

ClassCastException java.lang.String cannot be

cast to clojure.lang.IPersistentCollection

clojure.core/conj (core.clj:83)
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Clojure error messages: stacktrace

Exception in thread "main" java.lang.RuntimeException:

EOF while reading, starting at line 3,

compiling:(compilation_errors/eof.clj:4:1)

at clojure.lang.Compiler.load(Compiler.java:7137)

at clojure.lang.RT.loadResourceScript(RT.java:370)

at clojure.lang.RT.loadResourceScript(RT.java:361)

at clojure.lang.RT.load(RT.java:440)

at clojure.lang.RT.load(RT.java:411)

at clojure.core$load$fn__5066.invoke(core.clj:5641)

at clojure.core$load.doInvoke(core.clj:5640)

at clojure.lang.RestFn.invoke(RestFn.java:408)

at clojure.core$load_one.invoke(core.clj:5446)

at clojure.core$load_lib$fn__5015.invoke(core.clj:5486)

at clojure.core$load_lib.doInvoke(core.clj:5485)

at clojure.lang.RestFn.applyTo(RestFn.java:142)

at clojure.core$apply.invoke(core.clj:626)

at clojure.core$load_libs.doInvoke(core.clj:5524)

at clojure.lang.RestFn.applyTo(RestFn.java:137)

at clojure.core$apply.invoke(core.clj:626)

at clojure.core$require.doInvoke(core.clj:5607)
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Error message transformation: approaches

Function substitution approach

add type-checking preconditions
type mismatch produces custom message

Try/catch approach

wrap user’s code in try/catch block
capture error message
check against collection of regular expressions
replace with improved message
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Error message transformation: discussion

Function substitution approach

able to recover argument values and use them for a more
meaningful message

(+ 2 "apple")

In function +, the second argument "apple" must be

a number but is a string.

unable to handle compilation exceptions
cannot handle user-made functions
impractical to redefine all existing functions

Try/catch approach

able to handle both runtime and compilation exceptions
usually cannot recover argument values
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User scenarios: example slide 1

Erroneous code fragment:

print(Hello World)

Clojure error message:

CompilerException java.lang.RuntimeException:

Unable to resolve symbol: Hello in this context

Our modified error message:
Compilation error: name Hello is undefined

Student edit:
print("Hello World")
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User scenarios: example slide 2

Student edit:
print("Hello World")

Clojure error message:

ClassCastException java.lang.String cannot be

cast to clojure.lang.IFn

Our modified error message:
Attempted to use a string, but a function was

expected.

Corrected code:
(print "Hello World")
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Hints: how they are helpful

Errors can have several underlying causes

Multiple hints per error

Provide more human interpretation of the issue

Offer suggestions on how to resolve issues
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Hints: example

Erroneous code fragment:
print(Hello World)

Improved error message:
Compilation error: name Hello is undefined

Hint:

It looks like Clojure is expecting that Hello is

something named in your program. If you wanted Hello

and any following words to be plain text, try

surrounding them with double quotes. If Hello is

referring to something named in your program, make

sure it is spelled correctly.
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Hints: future work

Hints still a work in progress

Provide links to Clojure documentation

Develop more user scenarios

Usability study with students
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Setup

Current IDE options
LightTable

more established

Nightcode

newer, promising IDE

ongoing open source projects
IDE independent approach

Project manager

Leiningen
popular in Clojure community
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Error handling

Initial approach of try/catch

Maintain consistency between runtime, compile time, REPL

Issues with laziness

Try/catch student code does not catch all
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Current workflow diagram

Dependencies

Console

nREPL Compiler

Student Code
(REPL, Code)Leiningen

Key
Code Flow
Errors
Defined By 
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Issues

Installation of Leiningen is nontrivial

Command line acts as a barrier

We do not want students managing dependencies

No integration with new error handling system
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Proposed workflow diagram

Dependencies

Console

nREPL Compiler

Student Code
(REPL, Code)Leiningen

Key
Code Flow
Errors
Defined By 

GUI

Middleware

Lein Plugin

Error Handling 
System

IDE Interaction
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Future work

Error handling

currently have regular expressions
need user scenarios
usability studies

Technical implementation

implement items in the proposed diagram
work on user interface through the IDE
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Thank you!
Any questions?
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