
Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Developing Beginner-Friendly User Interactions for the
Clojure Programming Language

Henry Fellows, Aaron Lemmon, Max Magnuson,
Emma Sax, Paul Schliep, and Elena Machkasova
Midwest Instruction and Computing Symposium

April 11, 2015

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Table of contents

1 Introduction to the Project

2 Overview of Clojure

3 Error Messages

4 Technical Setup

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Clojure in an introductory course

Developed in 2007 by Rich Hickey

Member of the Lisp family

Felleisen et al found Lisp languages to be useful in
introductory courses

Current UMM course uses a Lisp language

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Motivations for the project

ClojurEd

ongoing project at UMM
introduce Clojure in an introductory course

Our work focuses on error messages in Clojure

error messages are a useful learning tool
focus on usability

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Overview of Clojure

Dynamically typed

Data types immutable by default

Functional

Runs on the Java Virtual Machine (JVM)

Read-eval-print-loop (REPL)

interactive environment
useful for development and debugging

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Prefix notation

Clojure uses prefix notation

parentheses
parameters
(<function-name> <argument 1> <argument 2>)

+ is a built-in function, not an operator

(+ 5 5)

-> 10

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Defining functions and variables

def can be used to define variables
(def my-string "Hello World")

my-string

-> "Hello World"

defn can be used to define functions
(defn increment-number [number] (+ number 1))

(increment-number 2)

-> 3

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Collections

All collections can contain any number of values of any data
type

lists
(1 2 "foo" :a 9 "bar")

hashmaps (key-value pairs)
{:a 1, :b 2, :c 3}

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Anonymous functions

Anonymous functions are a way to implement a function on
the fly, and use it only once

map takes a function and a collection as arguments, and
applies the function to the entire collection

(map (fn [number] (+ number 1)) ‘(0 1 2 3))

-> (1 2 3 4)

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Lazy sequences

Only a needed portion of a sequence is evaluated

take takes the first n elements of a collection
range returns an infinite sequence of non-negative integers
beginning at 0
(take 10 (range))

-> (0 1 2 3 4 5 6 7 8 9)

Fibonacci sequence
(1 1 2 3 5 8 13 ...)

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Clojure error messages: background

Error messages should be:

helpful for debugging
easy to understand
not intimidating

Clojure error messages are confusing

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Clojure error messages: examples

EOF while reading, starting at line 3,

compiling:(compilation_errors/eof.clj:4:1)

IllegalArgumentException Parameter declaration

* should be a vector

clojure.core/assert-valid-fdecl (core.clj:6842)

ClassCastException java.lang.String cannot be

cast to clojure.lang.IPersistentCollection

clojure.core/conj (core.clj:83)

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Clojure error messages: stacktrace

Exception in thread "main" java.lang.RuntimeException:

EOF while reading, starting at line 3,

compiling:(compilation_errors/eof.clj:4:1)

at clojure.lang.Compiler.load(Compiler.java:7137)

at clojure.lang.RT.loadResourceScript(RT.java:370)

at clojure.lang.RT.loadResourceScript(RT.java:361)

at clojure.lang.RT.load(RT.java:440)

at clojure.lang.RT.load(RT.java:411)

at clojure.core$load$fn__5066.invoke(core.clj:5641)

at clojure.core$load.doInvoke(core.clj:5640)

at clojure.lang.RestFn.invoke(RestFn.java:408)

at clojure.core$load_one.invoke(core.clj:5446)

at clojure.core$load_lib$fn__5015.invoke(core.clj:5486)

at clojure.core$load_lib.doInvoke(core.clj:5485)

at clojure.lang.RestFn.applyTo(RestFn.java:142)

at clojure.core$apply.invoke(core.clj:626)

at clojure.core$load_libs.doInvoke(core.clj:5524)

at clojure.lang.RestFn.applyTo(RestFn.java:137)

at clojure.core$apply.invoke(core.clj:626)

at clojure.core$require.doInvoke(core.clj:5607)

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Error message transformation: approaches

Function substitution approach

add type-checking preconditions
type mismatch produces custom message

Try/catch approach

wrap user’s code in try/catch block
capture error message
check against collection of regular expressions
replace with improved message

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Error message transformation: discussion

Function substitution approach

able to recover argument values and use them for a more
meaningful message

(+ 2 "apple")

In function +, the second argument "apple" must be

a number but is a string.

unable to handle compilation exceptions
cannot handle user-made functions
impractical to redefine all existing functions

Try/catch approach

able to handle both runtime and compilation exceptions
usually cannot recover argument values

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

User scenarios: example slide 1

Erroneous code fragment:

print(Hello World)

Clojure error message:

CompilerException java.lang.RuntimeException:

Unable to resolve symbol: Hello in this context

Our modified error message:
Compilation error: name Hello is undefined

Student edit:
print("Hello World")

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

User scenarios: example slide 2

Student edit:
print("Hello World")

Clojure error message:

ClassCastException java.lang.String cannot be

cast to clojure.lang.IFn

Our modified error message:
Attempted to use a string, but a function was

expected.

Corrected code:
(print "Hello World")

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Hints: how they are helpful

Errors can have several underlying causes

Multiple hints per error

Provide more human interpretation of the issue

Offer suggestions on how to resolve issues

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Hints: example

Erroneous code fragment:
print(Hello World)

Improved error message:
Compilation error: name Hello is undefined

Hint:

It looks like Clojure is expecting that Hello is

something named in your program. If you wanted Hello

and any following words to be plain text, try

surrounding them with double quotes. If Hello is

referring to something named in your program, make

sure it is spelled correctly.

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Hints: future work

Hints still a work in progress

Provide links to Clojure documentation

Develop more user scenarios

Usability study with students

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Setup

Current IDE options
LightTable

more established

Nightcode

newer, promising IDE

ongoing open source projects
IDE independent approach

Project manager

Leiningen
popular in Clojure community

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Error handling

Initial approach of try/catch

Maintain consistency between runtime, compile time, REPL

Issues with laziness

Try/catch student code does not catch all

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Current workflow diagram

Dependencies

Console

nREPL Compiler

Student Code
(REPL, Code)Leiningen

Key
Code Flow
Errors
Defined By 

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Issues

Installation of Leiningen is nontrivial

Command line acts as a barrier

We do not want students managing dependencies

No integration with new error handling system

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Proposed workflow diagram

Dependencies

Console

nREPL Compiler

Student Code
(REPL, Code)Leiningen

Key
Code Flow
Errors
Defined By 

GUI

Middleware

Lein Plugin

Error Handling 
System

IDE Interaction

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Future work

Error handling

currently have regular expressions
need user scenarios
usability studies

Technical implementation

implement items in the proposed diagram
work on user interface through the IDE

Developing Beginner-Friendly User Interactions for the Clojure Programming Language



Introduction to the Project
Overview of Clojure

Error Messages
Technical Setup

Acknowledgments

Our research was sponsored by:

HHMI

UMN UROP

UMM MAP

Thank you!
Any questions?

Developing Beginner-Friendly User Interactions for the Clojure Programming Language


	Introduction to the Project
	Overview of Clojure
	Error Messages
	Technical Setup

