
Exploration of parallelization efficiency in the Clojure programming language

Exploration of parallelization efficiency in the Clojure
programming language

Midwest Instruction and Computing Symposium

April 25, 2014

Henry Fellows, Joe Einertson, and Elena Machkasova



Exploration of parallelization efficiency in the Clojure programming language

Introduction

Our project is a comparison of parallelism methods in the
Clojure programming language.

I Relatively new language.

I Designed for efficent parallel operations.

I Recently added new parallel library.

Motivations.

I Interest in using Clojure as an educational tool.

I Using concurrency in functional language.

I Developing parallel algorithms.



Exploration of parallelization efficiency in the Clojure programming language

Table of contents

Overview of Clojure

Clojure Concurrency

Results

Conclusion



Exploration of parallelization efficiency in the Clojure programming language

Overview of Clojure

Intro to Clojure

I Clojure is a dialect of Lisp.

I Runs on the Java Virtual Machine (JVM).

I First introduced in 2007 by Rich Hickey.

I Immutable data structures.

I Built-in support for parallelism.



Exploration of parallelization efficiency in the Clojure programming language

Overview of Clojure

Functional Languages and Lisps

Functional Languages

I Clojure is a functional language.

I Treat computation as the evaluation of functions.

I Functional languages avoid direct memory manipulation.

Lisp is a family of programming languages

I Lisp-1 (1958)

I Common Lisp (1984)

I Racket (1994)

I Clojure (2007)



Exploration of parallelization efficiency in the Clojure programming language

Overview of Clojure

Prefix Notation

Can be generalized to (function arg1 ... argN).

(+ 2 3)
=> 5

Basic function syntax: (defn name [args] expr)

(defn add1 [num] (+ num 1))
(add1 3)
=> 4



Exploration of parallelization efficiency in the Clojure programming language

Overview of Clojure

Vectors

A type of collection in Clojure. Accessing items by index is
O(log n).

(get [2 7 4 9 5] 3)
=> 9



Exploration of parallelization efficiency in the Clojure programming language

Overview of Clojure

High Order Functions

Functions can take functions as arguments.

(map add1 [0 1 2 3 4])
=> [1 2 3 4 5]

Another high order function, reduce.

(reduce + [1 2 3])
=> 6

The combination of reduce and map.

(reduce + (map sqrt [1 4 25]))
=> 8



Exploration of parallelization efficiency in the Clojure programming language

Clojure Concurrency

Concurrency

I Most processors are now being built with multiple cores.

I Concurrency is the execution of multiple computations
simultaneously.

I Programming concurrent programs is considered hard.

I Deadlocking: two tasks are waiting for resources that the
other task holds.

I Immutable data structures make concurrency easier.



Exploration of parallelization efficiency in the Clojure programming language

Clojure Concurrency

Parallel Computation in Clojure

Clojure has several methods of parallelism.

I pmap is one of the early methods of parallelism in Clojure.

I Reducers is a new library introduced in 2012.



Exploration of parallelization efficiency in the Clojure programming language

Clojure Concurrency

Pmap

I A parallel version of map.

I Has the same syntax as map.

I On a sufficiently large collection, it will create additional
threads.

(pmap add1 [0 1 2 3 4])
=> [1 2 3 4 5]



Exploration of parallelization efficiency in the Clojure programming language

Clojure Concurrency

Reducers

I Released by Rich Hickey in May 2012.

I Built on Java’s fork/join framework.

I Reducers provides parallel higher-order functions, with the
same names as their serial counterparts.

I r/fold is used in place of reduce.



Exploration of parallelization efficiency in the Clojure programming language

Clojure Concurrency

Implementation of Reducers

I All collections come with a traversal mechanism.

I All reducers functions (r/map, r/filter) except
r/fold provide a recipe.

I r/fold causes the evaluation of all recipes attached to a
collection in parallel.

I Fork/Join framework creates one thread per core (as
reported by OS).

(r/fold + (r/map sqrt [1 4 25]))
=> 8



Exploration of parallelization efficiency in the Clojure programming language

Clojure Concurrency

Test Structure

I Computationally expensive operations on large sets of
integers

Three tests:

I Count-primes

(reduce + (map (one-if-prime-else-zero [...])))

I Sum-primes

(reduce + (map (zero-if-composite-else-n [...])))

I Sum-sqrt

(reduce + (map (sqrt [...])))



Exploration of parallelization efficiency in the Clojure programming language

Clojure Concurrency

Test Structure, Continued

Standard version:

(reduce + (map (sqrt [...])))

Version with pmap:

(reduce + (pmap (sqrt [...])))

Version with r/fold:

(r/fold + (map (sqrt [...])))

Version with r/fold and r/map:

(r/fold + (r/map (sqrt [...])))



Exploration of parallelization efficiency in the Clojure programming language

Clojure Concurrency

Test sub-Structure

Name Description
map + reduce serial map, serial reduce
pmap + reduce parallel map, serial reduce
map + r/fold serial map, parallel reduce
pmap + r/fold parallel map, parallel reduce
r/map + r/fold reducers parallel map, parallel reduce
r/fold parallel reduce

Table : Configurations for our tests

The r/fold configuration does not have a mapping phase: the
test code was rewritten to make it work with a single reduce.



Exploration of parallelization efficiency in the Clojure programming language

Clojure Concurrency

Data Sets
Count-primes

I Collection is 100,000 random integers between 0 and 1
billion.

I repeated 100 times, with new data each time.

Sum-primes

I Collection is 10,000 random integers between 0 and 1
billion.

I repeated 1000 times, with new data each time.

Sum-sqrt

I Collection is 10,000 random integers between 0 and 1
billion.

I repeated 1000 times, with new data each time.



Exploration of parallelization efficiency in the Clojure programming language

Clojure Concurrency

Test Enviroments

I an Intel i7 CPU, with 4 cores.

I an Intel i5 CPU, with 2 cores.

I an AMD FX-8350 CPU, with 8 cores.



Exploration of parallelization efficiency in the Clojure programming language

Results

Sum-Primes Results

Run reduce,
map

reduce,
pmap

r/fold,
pmap

r/fold,
map

r/fold r/fold,
r/map

i7 208.0 66.4 61.7 207.0 57.2 54.6
i5 279.3 250.6 284.3 280.8 132.0 131.0
AMD 266.9 225.1 248.4 275.5 59.2 63.6

Table : Sum-Primes averages (ms).



Exploration of parallelization efficiency in the Clojure programming language

Results

Count-Primes Results

Run reduce,
map

reduce,
pmap

r/fold,
pmap

r/fold,
map

r/fold

i7 2084.6 604.5 597.1 2065.7 535.8
i5 2802.8 2567.7 2585.6 2774.0 1269
AMD 2662.2 2411.3 2426.6 2647.9 557.6

Table : Count-Primes averages (ms).



Exploration of parallelization efficiency in the Clojure programming language

Results

Sum-Sqrt Results

Run reduce,
map

reduce,
pmap

r/fold,
pmap

r/fold,
map

r/fold

i7 115.4 128.7 109.7 28.6 30.5
i5 120.1 401.3 414.0 60.0 58.0
AMD 115.9 359.5 367.6 32.8 32.4

Table : Sum-Sqrt averages (ms).



Exploration of parallelization efficiency in the Clojure programming language

Conclusion

Pmap and Thread Thrashing

Pmap is unreliable.

I Running times ranging from close to the best parallel runs,
to worse than serial.

I Close to 2.5 times slower than serial methods.

Pmap creates too many threads.

I This causes thread thrashing.

I The number of treads leads to excessive context switching.

I Causing the process to choke on its own overhead.



Exploration of parallelization efficiency in the Clojure programming language

Conclusion

Reducers

I Reducers is fast, running 15% faster than pmap, when
pmap was working well.

I r/fold + r/map, runs as fast as the one step r/fold.

I Relatively reliable.



Exploration of parallelization efficiency in the Clojure programming language

Conclusion

Environments
Intel i7

I Resistant to thread thrashing.

I Caused by hyper-threading?

Intel i5

I Slowest machine tested

I Not resistant to thread thrashing.

AMD Fx-8350

I Slightly resistant to thread thrashing.

I Does not scale as well.

I Due to micro-architecture?



Exploration of parallelization efficiency in the Clojure programming language

Conclusion

Conclusion

There’s a lot to look into;

I Thread balancing in reducers.

I Optimal thread management.

I The effects of CPU architecture on thread thrashing.

We still want to continue on our main interest, parallel algorithm
development in functional languages.

The authors thank Jon Anthony for helpful discussions and
methodology suggestions.


	Overview of Clojure
	Clojure Concurrency
	Results
	Conclusion

