
Developing a Graphical Library for a Clojure-based
Introductory CS Course

Paul Schliep, Max Magnuson, and Elena Machkasova
Computer Science Discipline

University of Minnesota Morris
Morris, MN 56267

schli202@umn.edu, magnu401@umn.edu, elenam@umn.edu

Abstract

This project is a part of an ongoing effort on adopting the programming language, Clojure,
for an introductory college-level CS course. Clojure is similar to the programming language
Racket currently used in an introductory class at UMM, but provides better parallel pro-
cessing and integration with other programming languages that would benefit students in
their future careers. The objective of this project is to develop a beginner-friendly graphical
library that focuses on functional approaches to developing programs. We have developed
elements of a graphical library that provides the desired functionality, while maintaining a
focus on engaging students and key concepts of an introductory CS course, such as problem
solving and modularity. We hope that the developed graphical package, once completed,
will be used for an introductory CS course.



1 Introduction

UMM offers an introductory CS course on teaching the concepts of problem solving and
programming using the functional programming language Racket, which is a member of
the Lisp family of programming languages. Racket is specifically designed for students
new to programming [4]. Functional programming is a programming style of building
elements of programs while retaining immutable data structures and without directly ma-
nipulating memory or changing state. Imperative, on the other hand, is also a programming
style which uses a sequence of statements to build a program using memory manipulation
and changing the state of objects in a program. The course utilizes functional approaches of
Racket in order for students to better learn the general paradigms of programming. These
functional approaches work well to teach students new to programming since functional
approaches encourage programming without side effects and emphasize core CS concepts
such as recursion. However, since Racket is not often used in real world settings, it does
not benefit students as much in their future CS careers. Clojure, which is a functional lan-
guage also in the Lisp category, offers better support for concurrency, integration with Java,
and is gaining popularity in industry, thus it is a promising candidate for an introductory CS
course. We plan to integrate Clojure into the introductory course in place of Racket because
of the benefits it offers, but in order to do so, we need to resolve some of its limitations.
One such limitation is Clojure’s lack of a fully functional graphical library suitable for an
introductory CS course.

Racket has a full graphical API that is useful for students to create a wide array of programs
and also remains consistent with the functional design. Since graphics are a key motivating
component in an introductory CS course, it is important that we implement a graphical API
with user-friendly functions for introductory CS students. To fill the gap, we are integrating
Quil, an open source graphical environment, into the course [1]. Quil shows promise since
it has a large feature set appropriate for introductory students to create an extensive array
of graphical programs, such as creating a drawing of concentric circles, an animation, or
a game. However, Quil is built on top of the Java Swing library and has an imperative
design approach to creating programs that take students away from functional approaches.
It is important that functional approaches remain consistent throughout the course, and
having a graphical library with an imperative feel would not be ideal for teaching beginning
CS students. So, to keep the consistency of Clojure’s functional approaches and continue
teaching the key concepts of the introductory course, we are creating a graphical set of
functions built on top of Quil’s API that has similar functional approaches as Racket’s
graphical API. In order to do so, we abstract over many of the functions offered by Quil.
While there have been many technical difficulties in working with Quil on creating this
graphical set of functions, we have been able to successfully abstract over many of Quil’s
current functions to create a system that is closer to the functional design of Clojure.

1



2 Overview of Clojure

Clojure is a functional programming language in the Lisp family of languages. Clojure
was developed by Rich Hickey and released in 2007 [5]. Clojure was developed with a
strong emphasis on functional programming with its immutable data types and first class
functions. Additionally, Clojure provides a rich set of immutable data structures, such as
lists, vectors, and hashmaps.

Immutable data types are data types that cannot be changed. In Clojure when a change to
an item of data is needed, a new data item will be made with that new value. Immutable
data types are useful for avoiding side effects in functions. A side effect is when a function
directly manipulates memory or noticeably interacts outside of its own scope other than to
return a value. So if a function would change a global variable then it would have a side
effect. Side effects can make finding the cause of a problem in code more troublesome. If a
function interacts with more than itself then the problem can be spread out through the rest
of the program making it more difficult to resolve. By reducing side effects, the problems
will often be localized and easier to fix.

Clojure’s syntax is similar to other Lisp languages. It uses prefix notation. Which means,
all functions take the form of

(<name of function> <argument 1> <argument 2> ...)

This form even includes mathematical operations such as addition.

(+ 2 2)
-> 4

The symbol -> denotes the result returned by the Clojure interpreter.

Clojure supports anonymous functions. This allows programmers to make functions on the
fly when needed. For example, we may need to create a function to square a number.

(fn [x] (* x x))

Here the fn states that we have an anonymous function. Anything in the brackets following
the fn are the arguments that the function takes, in this case x. After that is the body of
the function which in this case is a simple multiplication of the argument x to itself. If we
wanted to be able to refer to this function later on in our code then we can use def to give
it a name.

(def square-root[x] (* x x))

Now this function can be reused anywhere in the code by calling square-root.

First class functions are functions that can be passed as arguments into other functions,
returned from functions, or stored in data structures.

(map square-root [1 2 3 4])
-> [1 4 9 16]

2



Here square-root is passed in as an argument to map which takes a function and a
collection as arguments and applies the function to each item in the collection. It then
returns the resulting collection [1 4 9 16].

Another important data structure in Clojure is hashmaps:

{:a 1 :b 2 :c 3}

A hashmap is collection of key-value pairs. The keys in the hashmap are directly connected
to a value. Typically keywords are used as keys in hashmaps. Keywords are simply iden-
tifiers of the form :a, :name, :student. In the hashmap above the keyword :a is
bound to the value 1, the keyword :b is bound to the value 2, etc.

3 Goals and Setup for an Introductory Course

3.1 Overview of Current UMM CS Introductory Course

CSci 1301 Problem Solving and Algorithms Development is an introductory course for
CS majors and minors. Students are not expected to have any background in computing
prior to the course. The course focuses on algorithmic approaches to problem solving
and implementing solutions in a programming language. For over 15 years the course has
been utilizing a dialect of Lisp: first Scheme, and then a very similar dialect Racket that
has been specifically developed for teaching [4]. Racket comes with a beginner-friendly
development environment, DrRacket, which introduces students to the language level-by-
level, making available more and more language capabilities as students move through the
course. While both Scheme and Racket provide optional mutable data, the focus of the
course is on functional approaches that do not utilize mutability.

The use of a functional language exposes students to concepts such as recursion by working
with lists and abstraction by working with higher order functions and generalizing solutions
to handle a wider and wider array of problems. For instance, students write a function to
add 1 to each element in a list of integers, and then a function to convert each element of a
list of strings to lower-case. After writing several functions that follow the same pattern of
applying an operation to each element in a list, they arrive at a concept of map: a higher-
order function that takes a list and a function and applies the function to each element
of that list. This type of generalization and abstraction is essential later in an algorithms
course, in a course that introduces object-oriented design, and in many other areas of CS.

One of the important elements of the current CSci 1301 setup at UMM is open-ended as-
signments in which students design interactive graphical programs via Racket’s library that
allows manipulating and displaying the state of a game (the so-called “world”) in a purely
functional way. The set of predefined functions allows students to create simple animations
as early as less than a month into a semester. Later in the semester students create a multi-
object interactive game in which objects can be controlled by keyboard characters, such as
arrow keys, or mouse clicks. The ease with which shapes and images can be incorporated

3



into Racket adds to the entertainment factor of the game. The course emphasizes group
work which prompts students to discuss approaches to their design and encourages them to
improve their coding style.

3.2 Plans for Introducing Clojure

Racket’s ease of use and functional design are helpful for teaching the learning objectives
of an introductory course, but since it is not often used in the industry, it is not an ideal
language for students to learn for their future CS careers. Clojure, however, has more
compelling benefits for students in their future CS careers such as integration with Java,
better parallel processing, and increasing popularity in the work field. What also makes
Clojure well-suited is that it has functional design similar to that of Racket. Functional
design in an introductory course is important since it teaches students many fundamentals
of programming and problem solving such as recursion, modularity, and the importance
of immutability. The benefit of teaching these concepts using functional approaches over
imperative approaches is that functional programming is without side effects because of
its immutability and stateless design. Because of this stateless design and lack of side
effects, students would not need to worry about managing in-place object changes or man-
aging memory, thus avoiding a common cause of confusion. Functional programming is
well-suited for learning problem solving as well since it teaches students to apply differ-
ent approaches to solving problems and can help students engage in other languages more
easily.

Although Clojure provides many important benefits not seen in Racket, it is a language
not yet ready for use in an introductory CS course. Many steps must be taken in order
to accommodate for Clojure’s steep learning curve that we hope will provide alternative
approaches with easier transitions to programming.

One barrier preventing Clojure from being used in an introductory CS course is its error
messages. Often, they tend to be unintuitive and unnecessarily long and can be hard to
understand for experienced programmers, much less beginning CS students. Also, there
is not an environment that supports easy navigation of the error messages and connecting
them to the location of the offending line of code (such as highlighting that line of code).
Since problem solving is a core learning objective of the introductory course, it is essential
for error messages to be usable for beginning students to enable them to easily troubleshoot
issues and focus on key learning concepts [3].

Along with the lack of an appropriate user interface for error messages, there is also an
absence of a complete development environment for beginner programmers to easily pro-
gram in. Currently, there is a Clojure IDE that is still in development called Light Table [2].
Since Light Table was designed for programming in Clojure and was created with usability
in mind, it shows promise in usability for introductory computer science students. We are
currently exploring ways of integrating our error message handling with Light Table before
it can be useful for an introductory course.

4



A graphical environment in an introductory course is useful since it provides good motiva-
tion for students to explore the language and practice their programming skills. However,
there is currently no graphical library for Clojure that teaches the learning objectives of
functional programming in an introductory CS course. A potential graphical library to use
for programming is an open-source project called Quil. Quil provides a lot of functionality
that is needed for a graphical library necessary for students to use in an introductory CS
course. Below is an example of a drawing done in Quil picturing a sine wave.

However, there are limitations and potential issues to using this graphical library that would
steer away from the learning objectives and functional approaches that UMM’s introductory
CS curriculum has in place. Our project’s goals are to resolve these limitations posed
by Quil and have a fully functional graphical library. We hope this graphical library will
encourage students to create interesting and useful programs and still develop their problem
solving skills through functional approaches.

3.3 Requirements for a Graphical Library

Racket’s graphical library has proven to be a powerful teaching tool in the current UMM CS
introductory course by allowing students to make their own animations less than a month
into the semester without any prior programming background. This maintains interest in
programming while reinforcing key concepts. Those key concepts are reinforced in part by
the functional design of Racket’s graphical library. It uses a well known approach called
model-view-controller (MVC).

MVC is a way of handling user interfaces. The model contains the state of the system
which is the collection of data used for displaying graphics. The model is also responsible
for updating this collection of data. The view is the visual representation of the data. The
controller listens for changes to the model and sends these updates to the model. Then, the
view is updated accordingly.

In the game of checkers the model would be the collection of the positions of the pieces,
the color of the pieces, and the board itself. The view is what actually displays the board
and each of the pieces, and the controller is what takes in the user input of what move the
user wants to make. In the process of the user making a move, first the message would be
interpreted by the controller. Then, the message would be sent to the model, so that the
position of the piece can be updated. Finally, the view will update to reflect the change in
position of the piece.

The modularization of work implemented by the MVC greatly reduces the dependency
on the order of operations. If everything was updated piece by piece by taking in input,

5



updating the data, then displaying it graphically, then the order of operations of the model,
view, and control would all matter simultaneously. Since the process is separated into
independent components, the order of operations only matters within each component.
Model-view-controller is the system used by Racket’s graphical library.

State in Quil is a collection of data related to each object in the system, not the graphical
representation itself. If we needed to draw a wheel on a car that was moving across the
screen, the tire and the rim would have properties such as position and size that are needed
for drawing the wheel. The state in this case would be the collection of position and size.

Drawing in Quil mashes the process of updating state and drawing state into a single func-
tion. In the wheel on a car example, first the tire’s position would be updated and drawn,
and then the rim’s position would be updated and drawn. Even in this small example, the
process is very dependent on order of operations. Two operations that are not inherently
dependent on each other, updating the tire and updating the rim, are now dependent on the
order in which they happen. This situation would be avoided by separating updating state
and displaying state similar to how it is handled in the MVC framework.

4 Developing a Clojure Graphical Library

4.1 Overview of Quil

We are utilizing Quil to provide the needed tools for students to develop programs for
graphical manipulation in Clojure. Quil is a graphical API developed for creating func-
tions that display and transform graphical elements. It provides the user with a library of
functions for creating shapes or changing colors that can be used for an array of projects
for students in an introductory-level CS course. These projects can range from creating a
drawing of repeating shapes to a game such as tic tac toe. Since Quil is built on top of Java
Swing, it uses Java applets to display the graphical images and updates them constantly
using a system of a set of frames that the user manipulates in order to animate drawings.
However, Quil has some limitations that prevent it from being usable for an introductory
CS course that teaches introductory students functional approaches to programming.

An apparent limitation of Quil is it has imperative approaches to creating programs that
would not be acceptable for students to learn in a class based on functional programming.
For example, when manipulating the world state in Quil, the state is first set, then the state
is displayed and updated simultaneously in a draw function, which directly manipulates
memory from the state and goes against the model-view-controller. In order to keep the
consistency of the functional approaches and the MVC framework, we are working on
creating a graphical library with design that implements functional approaches, abstracting
over Quil’s imperative design.

In our attempts to create the graphical library we have encounter many technical difficulties
stemming from Quil’s design. Developing programs in Quil’s environment requires the
user to make specific functions in order to correctly display the graphics. This involves

6



creating a setup function for setting the initial background color, setting the frame rate,
etc; developing a draw function for creating shapes and colors that will be transformed
as necessary; and putting these functions into a defsketch, a macro that calls these
functions as well as creating the title and size of the window. In order for Quil to be able to
run programs, the user must use the defsketch for the work to be displayed. Below is
an example of the typical setup in Quil consisting of the setup, draw, and defsketch
functions. In this example, it creates an animation of repeated circles.

(defn setup [] ;; Setup function to be called in defsketch
(frame-rate 1) ;; Set framerate to 1 FPS, the speed it draws
(background 200)) ;; Set the background color using RBG values

(defn draw [] ;; Draw function to be called in defsketch
(ellipse ;; Function that draws an ellipse
(random (width)) ;; Set the x coordinate at a random width
(random (height));; Set the y coordinate at a random height
100 100)) ;; Set the diameters at 100.

(defsketch example ;; Define a new sketch named example
:title "Example" ;; Set the title of the sketch
:setup setup ;; Specify the setup function
:draw draw ;; Specify the draw function
:size [400 300]) ;; Specify the size of the window

Although Quil does feature some documentation on its functions, installation, and exam-
ples, it was still a challenge to learn how to use it because it was under-documented enough
to where it caused some issues during our initial use such as understanding defsketch
or the values for transparency in color. This also posed issues when making new functions
that abstract over the current ones. This includes both the API’s documentation as well as
the documentation within the source code. So, when trying to understand how many of the
functions worked (such as its system of state), we had to scour the source code and look at
how the functions are set up to find a proper answer.

Our first step to create a more functional library was to separate the state manipulation so
that it is called through three separate entities: set, update, and display. However, since
Quil requires the user calling defsketch in order to call the functions of the program

7



where the state is also manipulated, it posed issues on trying to create the desired functional
system of state.

In order to overcome the challenges of developing our desired functional system state, we
plan to hide the defsketch program by making it auto generated by a macro. This is
necessary since defsketch takes the user out of the functional programming and would
help us create the system of state where memory manipulation would be able to be more
easily abstracted over.

5 Examples of Usage of the Graphical Library

In our design of the graphical library we needed to separate the processes of updating state
and displaying state. In order to accomplish this we developed a system that would take in
as setup:

• A collection of variables that describe state

• A collection of functions to update state

• An ordered collection of functions used to display graphics

These three collections correspond to each component of the MVC.

Example of user code before we abstracted over Quil’s functions

(defn draw []
(draw-food)
(draw-snake)
(update))

(defn setup-scene []
(background-color "white")
(setup-state [:drawcoll [450 450 450 470 450 490 450 510]
:snakeHeadX 450 :snakeHeadY 450 :foodX 150 :foodY 150
:snake-direction "north" :foodExists false :score 0]))

(defsketch snake
:title "Hungry Hungry Snake"
:setup setup-scene
:draw draw
:size [900 900])

Example of user code in our graphical library design

(def states
{:snake [450 450 450 470 450 490 450 510] :snakeHeadX 450
:snakeHeadY 450 :foodX 150 :foodY 150 :snake-direction "north"

8



:foodExists false :score 0})

(def updates
{:setup-drawing setup :update-snake update-snake})

(def display-order
[redraw-canvas draw-food draw-snake])

This code is for a game of snake. The first example shows a fragment of user code from
the original system before our version of the graphical library. In the first example, draw
is a function that draws the food, then the starting position of the snake, and updates the
snake when necessary based on user control of the keyboard. The setup-scene function
is used to setup the initial state of the game and background-color. The functions within
setup-state contain the data required for drawing the snake and for updating its posi-
tion and size when necessary. Finally, the defsketch calls all of the required functions
from the program and creates the window size and window title.

The second example shows the user code from our graphical library. States is a hashmap
with data that is required for drawing the graphical representation of the game. Updates
is a hashmap containing a setup function that will be run once followed by functions that
are designed by the user that will be used to update the state. Finally, display-order
is a collection of functions designed by the user to draw the different parts of the game in
order. That order is the order in which the items are drawn.

Our system differs from Racket by how state is updated. In Racket the user takes in the
entire state, and must break down the state into individual components before being able
to update it or draw it, and then reassemble it. In our system, each portion of the state is
tagged by keywords that match the function that update them. It is then supplied to the
user-made functions at each stage of the MVC process. That means if a game contains
snake and food, the user will provide a pair of functions for updating the snake and the
food and another pair of functions for drawing them. The user maintains control over what
constitutes components of state. We expect our system to be easier for students since they
would not have to deal with the added complexity of having to deal with breaking down
the state and reassembling it. Also a side benefit to our system is that functions won’t need
to be provide for parts of the state that do not need to be updated. This way students would
not need to deal with updating parts of the state that do not need to be accessed.

9



This design accomplishes both abstracting over direct memory manipulation and making
order of operations matter less. Our design abstracts over direct memory manipulation by
taking care of changing variables for the user. When a part of the state is ready for updating,
our system will input the stored data as an argument into the update function, then take the
newly updated state and store that data. The accessing of the data and the storing of the data
is all handled by the system and not by the user. When the graphics are displayed the data
is accessed again by our system and given to the user-made function to draw the graphics.

6 Conclusions and Future Work

We have successfully abstracted over many of the functions and imperative approaches
from Quil and have started to create a system that reflects the functional design of Clojure.
As seen in the previous section, our example shows that our graphical library encourages
a much more functional approach to creating programs and implements similar styles to
Racket’s graphical library in comparison to the original usage with Quil. With our system,
students can intuitively create programs using functional approaches to produce graphi-
cal figures. This is made possible by using approaches similar to Racket’s model-view-
controller system. We’ve also abstracted over several of Quil’s functions such as making
shapes and inserting text that helps create a more intuitive system and a graphical library
that encourages programming with functional methods.

While our developed graphical library accomplishes many of our design goals, it still has
some work left before it can be considered ready for an introductory CS course. We plan
to abstract over the defsketch function with our own macro in order to make it work
with our developed code for state. This macro should be able to also create a system where
students won’t need to worry about calling their functions using a defsketch and can
simply open a new project and begin making programs for displaying their work. We are
writing documentation for our developed functions as well as examples to ensure students
won’t have difficulties understanding functions. We will continue to abstract over functions
that we deem to be inaccessible to introductory CS students as we continue to develop the
system.

10



References

[1] https://github.com/quil/quil.

[2]

[3] ELENA MACHKASOVA, STEPHEN J. ADAMS, J. E. Steps towards teaching the clojure
programming language in an introductory cs class. presented at TFPIE, 2014.

[4] FELLEISEN, M., FINDLER, R. B., FLATT, M., AND KRISHNAMURTHI, S. How to
design programs: an introduction to programming and computing. MIT Press, Cam-
bridge, MA, USA, 2001.

[5] HICKEY, R. The clojure programming language. In Proceedings of the 2008 sympo-
sium on Dynamic languages (New York, NY, USA, 2008), DLS ’08, ACM, pp. 1:1–1:1.

11

https://github.com/quil/quil

	Introduction
	Overview of Clojure
	Goals and Setup for an Introductory Course
	Overview of Current UMM CS Introductory Course
	Plans for Introducing Clojure
	Requirements for a Graphical Library

	Developing a Clojure Graphical Library
	Overview of Quil

	Examples of Usage of the Graphical Library
	Conclusions and Future Work

