
Improving the Interoperability between Java and
Clojure

Stephen Adams
Computer Science Discipline

University of Minnesota Morris
Morris, MN 56267

adams601@morris.umn.edu

Abstract

The goal of this paper is to explore the current state of interoperability between the Clojure
and Java programming languages. Java is a statically-typed Object-Oriented language,
whereas Clojure is dynamic and functional. Clojure runs on the Java Virtual Machine,
which allows for Clojure programs to work with Java objects and methods directly.

Clojure was designed for interoperability with Java [10]. However, Clojure is a new lan-
guage and this means that Clojure-Java interoperability is also new. Because of this the
capabilities of interoperability in Clojure are not well defined. In this paper I will intro-
duce Clojure syntax and capabilities, and the current state of Clojure-Java interop. Then I
will make suggestions for expansions on how Clojure-Java interop can be improved in the
future.



1 An Introduction to Clojure

The Clojure programming language was released by Rich Hickey in 2007 [11]. Clojure is
part of the Lisp family of languages. Some brief examples of Lisp-like syntax are:

(+ 2 3)

Clojure uses prefix notation. To call a function you open a new list, the first thing in this list
is the function name followed by the arguments. In the above case the function ”+” takes
in the ints 2 and 3 and will return 5. Also:

(+ 2 3 4)

is a valid function call that returns 9. Clojure supports defining functions with a variable
number of arguments.

Many of Clojure’s data structures are the corresponding Java data structure; strings, char-
acters, and all of the numbers are just the Java types [9]. Clojure does, however, provide
its own collections. Clojure collections are each denoted by different bracket types, table 1
shows which literals correspond to each collection.

Table 1: Clojure collection literals
Collection Type Literal
List (1 2 3 4)
Vector [”apple” ”banana” ”orange”]
Hashmap { :address ”1234 Baker St.” :City Springfield :Zip 12345 }
Set #{67 2 8.8 -78 }

Clojure also has a keyword datatype, keywords are used as symbolic identifiers and are
denoted by a leading colon. A common example of a keyword is :import for importing
other files.

(ns some.Example.File
(:import javax.swing.JFrame))

The above bit of code would have been placed at the beginning of a Clojure file. This
declares the namespace that the following code would be run in and that the JFrame class
is available. Namespaces are used to organize bits of Clojure and also define the different
options that code in that namespace are given. These options include the :import keyword.

Another important Lisp feature that Clojure provides is its macro support. A macro is a
textual transformation. Essentially a macro expands from one piece of code to another
before any evaluation happens.

Clojure code is also Clojure data types. This is known as s-expressions and is common
implementation of Lisp syntax. Before Clojure is compiled into JVM bytecode it is parsed
into data structures by a reader [11].

1



To define new functions you use the defn macro followed by the new functions name then
a vector containing the names of any arguments the function will be passed, and finally the
logic of the new function. Clojure also has a special form called def that is used to store
values.

(def myName "Stephen")
(defn sayHello [name]
(str "Hello " name " I hope you’re having a good day!"))

The above example has stored the string “Stephen” under the name myName. Then a
function is defined that takes in a single argument and returns a string with the value of the
variable inserted into it. The call:

(sayHello myName)

will return the string “Hello Stephen I hope you’re having a good day!.”

1.1 Functional Programming is Clojure

Clojure functions are first class functions. This means that functions can be treated like
any other objects; specifically Clojure functions can be passed to and returned from other
functions, assigned to variable or stored in data structures [12]. Some examples of these
features can be found below.

(defn square [x]
(* x x))

(map square [1 2 3 4 5])

In the above example a new square function was defined and then it is passed to the built in
Clojure function map. Map takes in a function and a collection and then calls the function
with each of the collection’s elements as the argument. Then map returns a new collection
with each of the elements now modified. In the example above the map call will return the
vector [1 4 9 16 25].

Clojure also supports anonymous functions.

(defn all-same [vect]
(if
(empty? vect) true
(every? (fn [x] (= (first vect) x)) (rest vect))

)
)

This example function takes in a vector and checks if every element in that vector is the
same. Clojure’s if is a function that takes in three arguments the first is the condition
which if it evaluates to true the second argument is returned otherwise the third argument
is returned. The ”fn” function tells the compiler that a new function is being defined within

2



the current scope (in this case the scope is within the function all-same). First and rest are
functions that just return the first element in the vector and the rest of the vector without
the first element respectively. The anonymous function which was created by fn takes the
first element of vect and checks if it is equal to the argument x. The outer function every?
takes a function and a collection, and returns true if the function returns true when every
element in the collection is passed to it. Using an anonymous function here instead of a
defn outside of all-same allows for the function passed to every? to use the first element in
vect which would not be available to an outside function.

1.2 The Rationale behind Clojure

Rich Hickey says that he wrote his own programming language because he wanted four
things [10]:

• A Lisp

• Functional Programming

• Designed for Concurrency

• “symbiotic” with an established platform.

How Clojure fulfills the first two items has been previously covered. Clojure also supports
many concurrency features. Concurrency in Clojure is a large subject and is out of scope
for this paper. If you are interested I would advise starting by looking at [7].

Clojure is implemented on the JVM; a compiler compiles Clojure code to JVM byecode.
This means that Clojure code is interoperable with Java code. Because of the interoperabil-
ity ever since Clojure was released it had access to the vast amount of libraries that have
been written in Java. Implementation on the JVM also came with garbage collection and
other memory and resource management tools, the ability to be OS agnostic, and many
other features a more complete list can be found at [10].

2 Current Java Interoperability

Since Clojure and Java code both compile down to JVM bytecode Clojure can call code
written in Java. I will now briefly go over the primary methods for calling Java from
Clojure.

2.1 The Dot Special form

The simplest way to call Java methods and access Java fields is with the dot(”.”) special
form. The dot special form will first take a class member or class name then a method

3



name and then the arguments the method takes [8]. Here are a few examples of the dot in
use.

(. "fred" toUpperCase)
;;This will return "FRED".
(.toUpperCase "fred")
;;This also returns "FRED".

The second case will actually expand into the first call and is just a shortcut for accessing
fields or methods. There are a few more shortcuts to make accessing static Java methods
and fields.

;;Accessing a field
(Math/PI)
;;Returns 3.141592653589793
;;Calling a method
(Math/abs -2)
;;Returns 2

2.2 Java Objects in Clojure

Static methods are only a small part of Java. Without effective ways of dealing with ob-
jects the usefulness of Java Clojure interop would be severely limited. Fortunately Clojure
provides a full set of features that makes working with Java fairly easy.

To construct a new object you just use the ”new” special form.

(new StringBuffer "fred")
;;Returns #<StringBuffer fred>

To quickly modify an object the macro doto is available. The doto first takes a call to
new, then performs the rest of the supplied arguments on that object, and finally returns the
resulting object.

(doto (new StringBuffer "fred")
(.setCharAt 0 \F) (.append " is a nice guy!"))

;;Returns #<StringBuffer Fred is a nice guy!>

Doto is very handy for doing sequences of set methods right after you construct an object.

2.3 New Java Objects written in Clojure

There are problems that cannot be effectively solved without creating custom classes. In
particular gui programming in swing, the primary Java gui tool, is quite difficult without
the ability to extend the standard swing classes. Proxy and gen-class are the two functions
provided by Clojure to implement, extend, or create Java classes.

4



If you just want to do object-oriented programming in Clojure you do not need to use Java
interop. There is a set of functions that create new types if you don’t need to extend or
implement existing Java types.

2.3.1 Proxy

It has been said that Clojure does Java better than Java[5]. I think this is most true when
using proxy. It is very common when programming in Swing in particular. When creating
listeners to attach to buttons or other interactive interface devices it is very common to
implement many different listeners. Proxy simplifies this process by allowing you to define
a single superclass with methods that will work for your interface in most circumstances;
and when you need to attach a listener instead of creating an entirely new subclass use
proxy to create a new class that overwrites a few methods and inherits the rest.

Proxy is a macro that takes in two vectors and then a variable number of method declara-
tions and returns a new object. The first vector declares which Java classes the proxy object
will extend and which interfaces it implements. The second vector is a list of arguments
(which can be empty) to be passed to the superclass constructor. Any other arguments that
are passed to proxy are method declarations [8].

For the following proxy examples I will be using the following basic java interface:

public interface TestInterface {
int square(int x);
}

This interface is in a separate interface file and is then imported into the following Clojure
file.

(def test-inter
(proxy [TestInterface] [] (square [x] (* x x))))

(. test-inter square 5)
;;Returns 25

There can be more functions than just square but they have to be defined in the interface as
well. Proxy cannot define new methods not declared in the interface it inherits from or its
superclass.

2.3.2 Gen-class

Proxy is limited by what is defined in a super class or Java interface, on the other hand,
gen-class is designed for implementing fully featured Java classes. Gen-class consists of a
set of options which are represented as key value pairs, keys are just keywords. Gen-class
currently supports fifteen different options. The examples below were taken from [1]:

5



(ns some.Example
(:gen-class

:prefix method-))

(defn method-toString
[this]
"Hello, world!")

In the body of the file are the methods that are associated with the new type defined by gen-
class. This is a fairly simple example but it gives the basic idea of how gen-class works.
The only option that this class uses is the prefix option. This option defines what each
method that corresponds to the class must begin with. When you want to call the method
on the object you would use the following code:

(def aClass (new some.Example))
;;This constructs a new instance of the object
(.toString aClass)
;;Returns "Hello, world!" because method-toString
;;has the correct prefix.

The “-method” prefix is added on automatically by Clojure when the method call is made.
The prefix option can also be used to define multiple classes in the same file.

(ns some.Example)

(gen-class
:name some.Example.classA
:prefix classA- )

(gen-class
:name some.Example.classB
:prefix classB- )

(defn classA-toString
[this]
"I’m an A.")

(defn classB-toString
[this]
"I’m an B.")

When you call toString on one of these objects it will return the correct result depending
on the type of the object in question. Only a few options were covered here, the complete
gen-class specification can be found at [2] or [6].

6



3 Discussion and Conclusion

In the larger scheme of the Clojure language gen-class and proxy have very limited applica-
tions. Even within the ways Clojure has of defining types that generate Java classes proxy
and gen-class are a minority. Figure 1 displays a flowchart for determining which form to
use to define a new type.

Figure 1: Flowchart for choosing the correct type definition form, from [3]

Gen-class and proxy are the two functions that are listed in the ”interop zone” in 1. The
interop zone is where Clojure’s native abstractions no longer apply [3]. Future work on
this project may include trying to bridge the gap between other Clojure type definitions and
gen-class and proxy. This may include wrapping gen-class or proxy or extending the scope
of the other Clojure type definition forms so that gen-class and proxy may be depreciated.

7



The goal would be so that to the end programmer all Clojure defined types look and feel like
Clojure. Additionally the information about Clojure-Java interop are scattered throughout
many sources. Another goal of this project is to collect this information in one place, to
include all of the relevant documentation, as well as examples and tutorials.

In the forward to The Joy of Clojure[4] Steve Yegge states that it is rather surprising that
a Lisp dialect has suddenly become ”fashionable” again despite Clojure’s lack of a killer
app like Ruby has with Rails. In his contemplation on why this is he states that perhaps
”the killer app for Clojure is the JVM itself. Everyone’s fed up with the Java language,
but understandably we don’t want to abandon our investment in the Java Virtual Machine
and its capabilities: the libraries, the configuration, the monitoring, and the all the other
entirely valid reasons we still use it.” I think that this quote simultaneously illustrates the
reasons why Clojure is so compelling and why it’s Java interoperability needs to be as good
as possible.

3.1 Acknowledgments

This work is funded by the University of Minnesota Undergraduate Research Opportunities
Program. I would also like to thank my advisor Elena Machkasova for reviewing this paper
and helping me through the early stages of the project.

References

[1] BRANDMEYER, M. gen-class how it works and how to use it, Feb. 2010. [Online;
accessed March-2012].

[2] CLOJUREDOCS.ORG. gen-class, Mar. 2012. [Online; accessed March-2012].

[3] EMERICK, C. Flowchart for choosing the right clojure type definition form, 2011.
[Online; accessed March-2012].

[4] FOGUS, M., AND HOUSER, C. The Joy of Clojure, 1st, ed. Manning Publications,
180 Broad St. Suite 1323 Stamford, CT 06901, 2011.

[5] HALLOWAY, S. Clojure-java interop: A better java than java. QCon.

[6] HICKEY, R. Api for clojure.core, Mar. 2012. [Online; accessed March-2012].

[7] HICKEY, R. Concurrent programming, Mar. 2012. [Online; accessed March-2012].

[8] HICKEY, R. Java interop, Mar. 2012. [Online; accessed March-2012].

[9] HICKEY, R. Rationale, Mar. 2012. [Online; accessed March-2012].

[10] HICKEY, R. Rationale, Mar. 2012. [Online; accessed March-2012].

8



[11] WIKIPEDIA. Clojure — wikipedia, the free encyclopedia, 2012. [Online; accessed
March-2012].

[12] WIKIPEDIA. First-class function — wikipedia, the free encyclopedia, 2012. [Online;
accessed 20-March-2012].

9


