
Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Steps towards teaching the Clojure programming
language in an introductory CS class

Elena Machkasova, Stephen J Adams, Joe Einertson

University of Minnesota, Morris

Trends in Functional Programming in Education (TFPIE) 2013.

1 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Outline

1 Overview of Clojure

2 Technical challenges of teaching Clojure as the first language

3 Approaches to teaching Clojure to beginners

4 Conclusions

2 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

What is Clojure?

Clojure is a LISP.

Developed by Rich Hickey, released in 2007, rapidly gaining
popularity.

Designed to support concurrency.

Provides multiple immutable persistent data structures (lists,
vectors, hash maps, sets, etc.).

Runs on the JVM, fully integrated with Java.

Provides REPL (Read Eval Print Loop).

3 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Why the popularity?

Elegant.

Efficient (fast bytecode, efficient implementation of data
structures).

Convenient and safe efficient multi-threading.

Integrates with Java.

4 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Why Clojure in intro CS courses?

It’s a real-life language done well.

Introduces multiple data structures; abstraction vs
implementation.

Can be used in later courses (concurrency, interoperability
with Java, purely functional data structures).

Can be easily parallelize on multiple cores (no locking, only a
tiny change to the program).

Has a large friendly community (online resources, google
groups, open source projects, meetups) - easy to continue on
your own.

Rapidly increasing demand in industry.

5 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Clojure at UMM

UMM (University of Minnesota, Morris) is an undergrad-only
liberal arts campus of UMN, has a small, very active CS
department.

Included Clojure in upper-division courses (concurrency,
functional programming).

Introductory course focuses on problem solving and key
concepts, e.g. abstraction, recursion.

Current project: use Clojure in introductory class.

6 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Technical challenges of teaching Clojure to beginners

A need for a beginner-friendly development environment:

Text editor.

Project manager.

Error handling.

Some functions behave unexpectedly for beginners.

7 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Development environment: text editor

Currently there are very few options for a text editor for beginner
programmers.
What doesn’t work:

Emacs, vim (too complicated for beginners).

Eclipse plugin Counterclockwise (too large).

Clojure-specific text editors: Clooj, Catnip (too unstable).

What we would like eventually:

Light Table: a text editor based on functions, not files; instant
evaluation, etc. Still in development.

What we are using:

jEdit with LISP/Clojure plugins.

8 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Development environment: project setup

Clojure projects are managed by a tool called leiningen. We
need to include beginner-friendly error handling and functions.
Program code can be written in a file or typed into REPL.

We are developing a leiningen plugin for creating and running
student projects (work in progress).

9 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Error handling

Clojure error messages are Java exceptions.

Come with many lines of stack trace.

Refer to Java types. For example, (cons 2 3) causes:
IllegalArgumentException Don’t know how to create

ISeq from: java.lang.Long

We use try/catch to catch exceptions and transform them.

We “filter” stack trace, leaving only student’s code.

We replace types with beginner-friendly ones and rephrase
error messages.

10 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Error handling: examples

Code: (5 6)

Original:
java.lang.ClassCastException: java.lang.Long cannot

be cast to clojure.lang.IFn

Transformed:
Error: Attempted to use a number, but a function was

expected.

Code: ([1 3 2] 5) (trying to access an element at index 5 in a
3-element vector).
Original:
java.lang.IndexOutOfBoundsException

Transformed:
Error: An index in a sequence is out of bounds

11 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Error handling: work in progress

Current work in progress:

Provide error handling for code typed in REPL.

Handle compilation errors.

Developing leiningen plugin to run all student code (file and
REPL) inside try/catch.

Provide hints and examples for error messages (“perhaps you
swapped the order of arguments?”)

12 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Collections vs sequence abstraction

Clojure collections (lists, vectors, hash maps, sets, etc.):

...are stored in a way that optimizes their intended use.

lists have constant access time to the beginning and linear to
the end.
vectors are shallow trees, provide logarithmic access to any
position.

...have a few functions specialized to a collection type, e.g.
conj that returns a collection of the same type with a new
element added.

lists: (conj ’(2 3 1) 4) results in a list (4 2 3 1).
vectors: (conj [2 3 1] 4) results in a vector [2 3 1 4].

The difference in behavior is likely to be confusing to beginners.

13 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Collections vs sequence abstraction (cont.)

Sequences are an abstraction for a number of elements (possibly
infinite) in a specific order.

Most Clojure functions work on sequences and return
sequences (e.g. map).

It is easier for beginners to program in a
collection-independent (i.e. abstract) way.

We provide several functions that work in a
collection-independent way. They return sequences (look like
lists):

(add-first ’(2 3 1) 4) results in a sequence (4 2 3 1).
(add-first [2 3 1] 4) results in a sequence (4 2 3 1).
(add-last ’(2 3 1) 4) results in a sequence (2 3 1 4).
(add-last [2 3 1] 4) results in a sequence (2 3 1 4).

14 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Collections vs sequence abstraction (example)

Define a function to reverse a sequence, using reduce (fold).
Note: defn = define function, fn = anonymous function
(lambda), ’() = empty list, [] = empty vector.

;; works because conj adds to the beginning of a list

(defn my-reverse [coll]

(reduce (fn [c x] (conj c x)) ’() coll))

;; doesn’t work because conj adds at the end of a vector

(defn my-reverse [coll]

(reduce (fn [c x] (conj c x)) [] coll))

;; abstract approach (works with a list or a vector)

(defn my-reverse [coll]

(reduce (fn [c x] (add-first x c)) ’() coll))

15 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Abstraction-based teaching approach

Students will see both collection-specific and
collection-independent functions.

Collection-independent functions allow focus on
problem-solving, make things easier.

Different collections will be introduced slowly, as needed.

Understanding the differences between implementation details
(collections) and abstraction (sequence) can carry on to Data
Structures and Software Development.

16 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Benefits and challenges of teaching Clojure in intro classes

Benefits:

Clojure has a rich collection of data structures.

Based on abstraction, teaches good programming skills.

Used in industry and has a well-developed friendly community.

Provides opportunities for parallelization.

Challenges:

Development of beginner-friendly development environment.

Handling error messages.

Developing approaches to teaching that present the strengths
of Clojure without confusing beginners.

Developing beginner-friendly documentation and examples.

17 / 18



Overview of Clojure
Technical challenges of teaching Clojure as the first language

Approaches to teaching Clojure to beginners
Conclusions

Acknowledgments and selected references

Selected references:

Richard Brown, Elizabeth Shoop, et al: Strategies for
preparing computer science students for the multicore world.
ITiCSE working group reports, 2010.
Matthias Felleisen, Robert Bruce Findler, Matthew Flatt,
Shriram Krishnamurthi: How to design programs. MIT Press,
2001.
Rich Hickey: The Clojure programming language. Symposium
on Dynamic languages, 2008.
Simon Thompson, Steve Hill: Functional programming
through the curriculum. Functional Programming Languages
in Education, 1995.

The authors thank Jon Anthony, Brian Goslinga, Nic McPhee, and
Simon Hawkin for helpful discussion and Max Magnuson and Paul
Schliep for help in testing.

18 / 18


	Overview of Clojure
	Technical challenges of teaching Clojure as the first language
	Approaches to teaching Clojure to beginners
	Conclusions

