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Curious facts about my research

My research is in programming languages.

In the past: some theoretical and practical work on how to
make programs run faster while getting the same behavior
(program optimization).

Recently: exploring use of a new programming language
Clojure in introductory CS classes.

Clojure: a functional programming language released on
October 16, 2007.
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Foundations of computing systems: how it all started.

Source: http://en.wikipedia.org/wiki/Alan_Turing

Alan Turing 1936: Turing machine: an abstract computing device.
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Foundations of computing systems: Turing machine.

Source: http://en.wikipedia.org/wiki/Turing_machine

Turing machine: an abstract computing device.

Consists of an infinite tape (memory) and a movable read/write
head that reads and writes symbols on the type: (direct changes in
memory).
Executes rules, e.g. if the current memory cell has 0, write 1 and
move left.
Internal architecture of a computer, such as CPU (central
processing unit) and memory, are based on concepts of the Turing
machine.
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Foundations of computing systems: how it all started.

Source: http://en.wikipedia.org/wiki/Alonzo_Church

Alonzo Church (Alan Turing’s thesis adviser).
1930s: the lambda calculus (λ-calculus): a system in mathematical
logic that describes computations.
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Foundations of computing systems: the λ-calculus.

A computation is a sequence of function applications, similar to
f (g(x)).
Functions: λx .x + 1 is a function that adds 1 to its argument.
λx means that a function takes one argument x , and x + 1 is the
value that the function computes.
Does not deal with details of implementation or memory
manipulation.

Church-Turing thesis: the Turing machine and the λ-calculus can
both perform all possible algorithms that can be described by
computable functions.
Languages that are equivalent to the Turing machine are called
Turing complete.
All general purpose programming language are Turing complete.
All languages are equivalent. Are they equal?.
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First programming languages.

First computers were programmed only by machine instructions.
High-level programming languages appeared so that programs can
be understandable to humans.
First high-level languages:

1957: Fortran (Formula Translator), based on memory
manipulation (like a Turing machine),

1958: Lisp (List Processing), based on function composition
(like the λ-calculus),

1959: Cobol (Common Business-Oriented Language), based
on memory manipulation (like a Turing machine).

Languages that are like the λ-calculus are called functional.
Languages that are like a Turing machine are called....
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Functional vs imperative.

Credit: Leonid Scott.
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Imperative vs functional

Imperative Functional
Most entities are changed (up-
dated) in-place.

Most entities are immutable: a
new entity is created upon an up-
date.

Results are accumulated by up-
dating a memory locations, often
in a loop.

Results are accumulated as a se-
quence of function calls, e.g. re-
cursion (a function calls itself).

Functions are defined before the
program starts executing, encap-
sulate some functionality.

Functions are first-class citizens:
can be anonymous, constructed
“on-the-fly”, passed to other
functions, returned from other
functions.

Built-in data structures are speci-
fied in terms of memory addresses
(e.g. arrays: contiguous blocks of
memory)

Built-in data structures are de-
fined inductively, e.g. a part of
a list is itself a list.
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Imperative vs functional: example

Sum up all the elements of a dataset data.
Imperative, a loop: sum is a variable to accumulate results, i is
an index.

sum = 0;

for (i = 1; i < length(data); i = i + 1) {

sum = sum + data[i];

}

Assume data is 5, 7, 3, ...

Then:
i = 1, sum = 5 on the first iteration of the loop,
i = 2, sum = 12 on the second,
i = 3, sum = 15 on the third,.......
Error-prone: when does the index change? Are we using the right
element?
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Imperative vs functional: example

sum = 0;

for (i = 1; i < length(data); i = i + 1) {

sum = sum + data[i];

}

Functional: recursion:

function sum (data):

if isEmpty?(data) then 0

else first(data) + sum(rest(data))

If data has no elements, the sum is 0, otherwise it’s the result of
adding the first element to the sum of the rest of data.
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Imperative vs functional: example

sum = 0;

for (i = 1; i < length(data); i = i + 1) {

sum = sum + data[i];

}

Functional: higher order functions:
(reduce + data)

+ is a function (not an operation, as in imperative languages), we
pass it to a function reduce that applies it to all elements.

(reduce minimum data)

minimum is a function that finds the smaller of two elements.

(reduce (lambda x y. if x < 0 then 0 else (x + y)) data)
Anonymous function adds up positive data elements only.
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Imperative vs functional: tradeoffs

How do functional languages store intermediate data? When a
function starts, it allocates a workspace where its intermediate
results are stored.

1000 function calls = 1000 workspaces??? Isn’t it slow and
memory-intensive???
There are built-in optimizations in functional languages. Some
degree of awareness of efficiency is required.
Imperative languages with a direct control of low-level memory
access (e.g. C) can indeed be faster.
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Imperative vs functional: tradeoffs (cont)

Functions as first-class citizens allow more modular and abstract
code: no need to write a separate loop for adding all elements of a
dataset and for multiplying since + and * (multiplication) can be
passed to a function:

(reduce + list)

(reduce * list)

Functional languages promote writing shorter functions: it’s easier
to “separate concerns”.
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Imperative vs functional: tradeoffs (cont)

Effects of immutability:

easier to develop correct programs: do not need to keep track
of a changing state of entities in a program.

more program optimization: knowing that a certain entity
doesn’t change allows remembering and pre-computing of
parts of a program.

functional programs are easier to run in parallel (multiple
CPUs or distributed computation): since entities don’t
change, no need for access control to shared data since there’s
no risk of an accidental overwrite.

functional languages explicitly make data mutable: easier to
track.

Convenience for parallelization renewed interest in functional
languages.

29 / 47



Current language landscape.

There are 100+ actively used programming languages.
Imperative are much more commonly used: C, C++, Java, C#,
python, JavaScript, php, etc.
Several functional languages in active use: dialects of Lisp
(Common Lisp, Scheme, Clojure), Haskell, Erlang, Scala.
Functional languages are on the rise with parallel computation.
Mixed paradigm: many modern languages are imperative, but
with some support for immutability and higher-order functions.

Object-oriented languages: represent real-life entities as object
in a program (modularity): Java, C++, C#, Scala.
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Skills/background for CSci students.

Students entering computing industry...

...are expected to know at least one commonly used language
(C++, Java, C#) well.

....will have to be learning new languages/paradigms as early
as within the first week at work.

...will be working with multiple languages and systems at the
same time.

...are expected to write well-organized clear program code.

...greatly benefit from knowing a variety of tools and
approaches for collaborative software development process,
testing, managing projects, professional communication skills.

Independent, self-directed learning, building upon a strong
knowledge foundation and experience with collaborative work.
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UMM curriculum structure.

Introductory courses. CSci 1201: python (imperative with
functional elements) or CSci 1301 Racket (a functional language,
dialect of Lisp).
Sophomore level. Course: CSci 2101 Data Structures: Java
(imperative, object-oriented).
Sophomore/Junior level. Intro to operating systems, larger scale
software development, algorithms development.
Junior/Senior level. Electives.
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Why a functional language in an intro CS class?

Why teach a functional language in an intro class if mostly
imperative languages are used later?

Immutability makes design easier: focus on concepts.

Focus on abstraction, generalization, and modularity.

Focus on functions.

Focus on compact, logical code design.

Better understanding of recursion (useful for recursive data
structures and algorithms later)

Students better learn more involved concepts (e.g. object-oriented
approaches) with a strong base in general concepts.
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Current CSci 1301: Racket programming language

.
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Current CSci 1301: Racket programming language

.

A dialect of Lisp, specifically designed for teaching.

Comes with an environment that allows students to easily
write and execute their code.

Has multiple levels: Beginner Student, Intermediate,
Advanced. Lower levels make only a subset of features
available to students, to avoid accidentally executable, but
incorrect code. Also change the way output is formatted.

Incorporates a system for working with images and allows
students to provide functions for interactive environments
(“when a key is pressed, do this”) without dealing with
back-end structures.

UMM has been using Racket, and its predecessor Scheme, in intro
classes for about 15 years. It worked well.
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The Clojure programming language.

Clojure is a new language in the Lisp family.

Built-in immutability, for safe sharing during parallel
processing.

Built-in support for several models of mutability for cases
when data needs to be concurrently modified.

Running in the Java Virtual Machine: a well-developed engine
for running Java: can piggy-back on its optimizations,
interactions with the operating systems, etc.

Fully interoperable with Java: can use all Java libraries.

Used in industry, has a large (and fast growing) community
around it (conferences, meetups, open source projects,...)

It’s a nice language!
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Clojure at UMM: faculty, students, alums

First introduced by Brian Goslinga (UMM CSci’11)

Made an appearance in parallel/distributed computing class
(2011 Elena, 2013 Nic) and Programming Languages (2012).

Three projects: improving Clojure error messages (Brian
Goslinga UROP, Eugene Butler LSAMP), interoperability
between Java and Clojure (Stephen Adams UROP),
parallelization in Clojure (Joe Einertson UROP).

An idea came up that we should try using Clojure in an
introductory class.

Starting Fall 2012, a joint work with Stephen Adams (UMM
CSci 2012), Joe Einertson (UMM CSci 2013), plus a directed
study with Paul Schliep and Max Magnuson (UMM CSci
2015).

A presentation at Trends in Functional Programming in
Education (TFPIE), May 2013.

We now have a name for this project: ClojurEd
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Potential benefits of using Clojure in intro classes.

If done right, we can get most of the same benefits as from
using Racket.

Additionally, it integrates nicely into future classes in the way
Racket cannot.

There is a large community around it: opportunities to get
help or to jump into a project. Also, issues are fixed fast and
the language support doesn’t depend on a dozen of
individuals.

Allows fast parallel execution.

It’s a real-life language done well, and there aren’t that many
out there.
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What needs to be done?

What needs to be done before we can teach Clojure to intro
students?

A lot! Work in progress:

Environment for beginners: looking for a beginner-friendly
text editor, need to add a few things to make it automatically
run Clojure with our libraries.

Error messages in Clojure are not beginner-friendly. We have
done some work on improvements.

We are changing and adding Clojure functions to make them
easier to use for beginners.

Developing an approach to introducing Clojure abstractions to
beginners.

Exploring Clojure libraries for graphics that would allow
students to work with images, similar to Racket.
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Bits of the universe: a Clojure poem

nil

pop!

(time ())

empty?

atom

atom atom

atom atom atom atom atom

atom atom atom atom atom atom atom atom atom

(binding [atom [atom [atom [atom [atom]]]]])

make-hierarchy

repeat

repeatedly iterate sequence

constantly interleave

merge

replicate

parents

descendants

cycle

7000000000

true? false?

find identity

find name

symbol? number?

rational? odd?

resolve

future?

future-done?

future-cancelled?

reversible?

nil?
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