
Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Developing a Graphical Library for a Clojure-based
Introductory CS Course

Paul Schliep, Max Magnuson, Elena Machkasova

Midwest Instruction and Computing Symposium
University of Minnesota, Morris

April 25, 2014

1 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Outline

1 Introduction to the project

2 Goals and setup for an introductory course

3 Developing a Clojure graphical library

4 Our graphical library

5 Conclusions and future work

2 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

The Project

Contributing to ClojureEd on adapting to Clojure for an
introductory course

Objective is to develop a graphical library for Clojure

We hope this graphical library can be useful for the
introductory course

Work in progress

3 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Introduction to Clojure

Developed by Rich Hickey in 2007

Functional programming language in the Lisp family

Runs on the JVM

Immutable data structures and first class functions

Data structures such as lists, vectors, hashmaps

4 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

UMM’s introductory CS course

Students are not expected to have prior programming
knowledge

The course currently utilizes Racket to help teach key
concepts

Racket is a functional language similar to Clojure

Functional languages help students learn concepts like
recursion and higher order functions

The course makes use of Racket’s graphical library

5 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Racket graphical library game example

6 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Benefits and limitations of Clojure

Benefits:

Gaining traction in the industry

Offers better parallel processing

Integration with Java

Limitations:

Unintuitive error messages

Lacks a graphical library

Lack of an IDE suitable for beginner CS students

7 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Clojure Syntax

Prefix notation

(<name of function> <argument 1> <argument 2> ...)

(+ 2 2)

-> 4

Defn

(defn square[x] (* x x))

Anonymous functions

(fn [x] (* x x))

First class functions

(map square [1 2 3 4])

-> [1 4 9 16]

Hashmaps

{:a 1 :b 2 :c 3}

8 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Introduction to functional approaches

Stylistic choice for programming

Immutable data types

Less dependency on order

First class functions

9 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Requirements for a graphical library

Reinforce functional approaches from Clojure

Accessible to introductory students
Implement Model-view-controller (MVC) similar to Racket’s
graphical library

Checkers example

10 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Overview of Quil

Open source graphical library for Clojure

Provides functionality suitable for introductory-level projects

Built on top of Java Swing

Continuously being developed

11 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Developing programs with Quil

Defsketch

Works using frames and frame rate

Draws in layers

Supports input from keyboard and mouse

(defsketch example

:title "Example"

:setup setup-example

:draw draw-example

:size [400 300])

12 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Example of a Quil program

Example Code:

(defn setup-example []

(frame-rate 1)

(background 200))

(defn draw-example []

(ellipse

(random (width))

(random (height))

100 100))

Our Image

13 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Issues with Quil

Imperative approaches

Often requires direct manipulation of state
Dependencies on order
Inconsistent with introductory course goals

Underdocumented API

14 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Development of the graphical library

Abstracted over Quil’s functions

Defsketch
Shapes
Colors
Text

Handling state in a functional approach

Models MVC

15 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

How our graphical library works

Separates handling of state

MVC
update
display

16 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

An example made using our graphical library

(def states

{:snake [450 450 450 470 450 490 450 510],

:snake-head [450 450],

:food [150 150],

:snake-direction "north", :score 0})

(def updates

{:setup-drawing setup

:snake update-snake

:food update-food})

(def display-order

[draw-canvas draw-food draw-snake])

17 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Snake Example

18 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Differences in handling state in Racket

Racket gives entire state to user

19 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Diagram of handling state in our graphical library

Our system breaks state down for the user

20 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Conclusions

Good start for abstracting over Quil’s functions

More functional approach

Graphical library shows promise

21 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Future Work

This is still work in progress

Create our own macro to abstract over defsketch

Abstract over more functions in Quil

Develop an API with examples for students

22 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Selected references

Selected references:

Quil https://github.com/quil/quil

Filleisen, M., Findler, R. B., Flatt, M. and Krishnamurthi, S.
How to design programs: an introduction to programming and
computing. MIT Press, Cambridge, MA, USA 2001.

Hickey, R. The clojure programming language. In Proceedings
of the 2008 symposium on Dynamic languages(New
York,NY,USA,2008),DLS’08,ACM,pp.1:1-1:1.

23 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Acknowledgements

The authors would like to thank

Nick Skube and Niccolas Ricci

Developers of Quil

Friends and Family

24 / 24


	Introduction to the project
	Goals and setup for an introductory course
	Developing a Clojure graphical library
	Our graphical library
	Conclusions and future work

