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The Project

Contributing to ClojureEd on adapting to Clojure for an
introductory course

Objective is to develop a graphical library for Clojure

We hope this graphical library can be useful for the
introductory course

Work in progress
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Introduction to Clojure

Developed by Rich Hickey in 2007

Functional programming language in the Lisp family

Runs on the JVM

Immutable data structures and first class functions

Data structures such as lists, vectors, hashmaps
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UMM’s introductory CS course

Students are not expected to have prior programming
knowledge

The course currently utilizes Racket to help teach key
concepts

Racket is a functional language similar to Clojure

Functional languages help students learn concepts like
recursion and higher order functions

The course makes use of Racket’s graphical library
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Racket graphical library game example
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Benefits and limitations of Clojure

Benefits:

Gaining traction in the industry

Offers better parallel processing

Integration with Java

Limitations:

Unintuitive error messages

Lacks a graphical library

Lack of an IDE suitable for beginner CS students
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Clojure Syntax

Prefix notation

(<name of function> <argument 1> <argument 2> ...)

(+ 2 2)

-> 4

Defn

(defn square[x] (* x x))

Anonymous functions

(fn [x] (* x x))

First class functions

(map square [1 2 3 4])

-> [1 4 9 16]

Hashmaps

{:a 1 :b 2 :c 3}
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Introduction to functional approaches

Stylistic choice for programming

Immutable data types

Less dependency on order

First class functions
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Requirements for a graphical library

Reinforce functional approaches from Clojure

Accessible to introductory students
Implement Model-view-controller (MVC) similar to Racket’s
graphical library

Checkers example
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Overview of Quil

Open source graphical library for Clojure

Provides functionality suitable for introductory-level projects

Built on top of Java Swing

Continuously being developed
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Developing programs with Quil

Defsketch

Works using frames and frame rate

Draws in layers

Supports input from keyboard and mouse

(defsketch example

:title "Example"

:setup setup-example

:draw draw-example

:size [400 300])
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Example of a Quil program

Example Code:

(defn setup-example []

(frame-rate 1)

(background 200))

(defn draw-example []

(ellipse

(random (width))

(random (height))

100 100))

Our Image
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Issues with Quil

Imperative approaches

Often requires direct manipulation of state
Dependencies on order
Inconsistent with introductory course goals

Underdocumented API
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Development of the graphical library

Abstracted over Quil’s functions

Defsketch
Shapes
Colors
Text

Handling state in a functional approach

Models MVC
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How our graphical library works

Separates handling of state

MVC
update
display
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An example made using our graphical library

(def states

{:snake [450 450 450 470 450 490 450 510],

:snake-head [450 450],

:food [150 150],

:snake-direction "north", :score 0})

(def updates

{:setup-drawing setup

:snake update-snake

:food update-food})

(def display-order

[draw-canvas draw-food draw-snake])

17 / 24



Introduction to the project
Goals and setup for an introductory course

Developing a Clojure graphical library
Our graphical library

Conclusions and future work

Snake Example
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Differences in handling state in Racket

Racket gives entire state to user
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Diagram of handling state in our graphical library

Our system breaks state down for the user
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Conclusions

Good start for abstracting over Quil’s functions

More functional approach

Graphical library shows promise
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Future Work

This is still work in progress

Create our own macro to abstract over defsketch

Abstract over more functions in Quil

Develop an API with examples for students
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Quil https://github.com/quil/quil

Filleisen, M., Findler, R. B., Flatt, M. and Krishnamurthi, S.
How to design programs: an introduction to programming and
computing. MIT Press, Cambridge, MA, USA 2001.
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