Problem 1 (6 points). Exercise 2.1 p.16.

Problem 2 (6 points). Exercise 2.2 p.17. The phrasing of this problem is a bit confusing. To clarify: suppose you are given a black-box function $Halt$ that, given any program p that does not take any input, returns “true” if the p halts and “false” otherwise. “Black-box” here means that you don’t know how it works, but you can call it with any input p, and it will return the result as specified.

Can you use this black-box function to construct another function to solve the halting program? This new function should work exactly as $Q(P, x)$ defined on p. 15: it should take a one-input program P (different from p above since p takes no input!) and its input x and returns the output that tells whether $P(x)$ terminates.

Please justify your answer precisely: if you can solve the halting problem using $Halt$, then explain how, otherwise explain why it is not possible. Note that if your answer is that you can solve the halting problem using $Halt$, this implies that $Halt$ doesn’t exist since we have already proven that the halting problem is undecidable.