CSci 4651 Fall 2003
Problem Set 9: Object-oriented languages I (Simula, Smalltalk,
C++).
Due Friday, December 5th

Problem 1 (Simula object implementation). Consider the example in
exercise 11.1 on p. 327. Consider replacing cp.distance(r); by each of the
following lines of code:

e r.equals(cp);
e cp.equals(cp);

For each of the cases please draw the last activation record on the stack (the one
that replaces activation record 4). Explain which method would be executed in
each case (the one of the class Point or of the class ColorPt).

Problem 2 (Simula subtyping). Problem 11.3 p. 330, parts a and b only.
Give a concrete example for part b.

Problem 3 (Smalltalk implementation). Exercise 11.4 on p. 330.

Problem 4 (Smalltalk inheritance). Exercise 11.7 on p. 333. In part (b),
explain the two possible outcome and their consequences. Explain the trade-
offs between the two. If you think that one of the outcomes is more consistent
with the overall design of Smalltalk, please indicate which one (this question is
optional).

If you would like to test C++ code, here is how to compile and run it on
machines in the dungeon:

e write your code in a file with .c extension.

e in order to use cout, start your file with
#include <iostream.h>
If you are using printf, replace this line by
#include <stdio.h>
If you get an error message “library not found”, please contact the dungeon

masters (some C libraries were missing on some of the machines, they
should be installed now).

e compile your program:

g++ myprog.c

e run your program by typing a.out at the prompt. If this doesn’t work,
try ./a.out

e I have not tested C++ code given in the book. It’s possible that some code
fragments don’t compile. Please contact me with any specific problems.

Note: Unless explicitly stated otherwise, exercises in this problem set don’t
require writing or testing programs.

Problem 5 (C++ objects). Exercise 12.1 on pp. 367-368.

Problem 6 (C++ inheritance). Consider the following declaration of classes
A and B:

class A {
protected:
int x;
public:
AO { x =0;}
void increment() { x++; }
virtual void decrement() { x——; }
void print() {cout << x << endl;}
};

class B : public A {
public:
void increment() { x =

o
KoM

1+
NN
[

void decrement() { x =

};

The following program is missing declarations of the types of pointers: they are
replaced by question marks, each question mark stands for A or B.

void main() {

A a; // a is an object of class A
71 * ptr;
ptr = &a;

ptr -> increment();

ptr -> decrement();

ptr -> print();

Bb; // b is an object of class B
72 x ptril;

ptrl = &b;

ptrl -> increment();

ptrl -> decrement();

ptrl -> print();
}

For each of the results below please indicate whether it is a possible output of
the program. If yes, what types do 71 and 72 stand for and which methods
would be called? If no, please explain.

1. The program prints 0 and 0.
2. The program prints 0 and 1.
3. The program prints 0 and -1.
4. The program prints -1 and -1.
5. The program prints 1 and 0.

Problem 7 (C++ method subtyping and Thanksgiving cooking). Sup-
pose that C++ class Turkey is a subclass of the class Bird and the class
TwentyPoundTurkey is a subclass of Turkey. The class Dish has a method
cook which takes a turkey and returns a nice Thanksgiving dish:

class Dish {
public:
virtual Dish cook(Turkey t) {
Dish d = new Dish;
.... // add some onions and carrots,
.... // cook for a long time
return d;
}
.... // other methods
};

Class Casserole is a subclass of class Dish which redefines the method cook.
Below are 5 versions of Casserole:

1. class Casserole: public class Dish {
public:
virtual Casserole cook(Turkey t) {
Casserole c = new Casserole;
.... // add some onions and carrots,
.... // chop everything finely,
.... // cook for a long time
return c;

}

2. class Casserole: public class Dish {
public:

virtual Dish cook(Turkey t) {
Dish d = new Dish;
.... // add some onions and carrots,
.... // chop everything finely,
«... // cook for a long time

return d;
}
}
3. class Casserole: public class Dish {
public:
virtual Casserole cook(Bird b) {
Casserole c = new Casserole;
... // add some onions and carrots,
.... // chop everything finely,
.... // cook for a long time
return c;
}
}
4. class Casserole: public class Dish {
public:
virtual Dish cook(Bird b) {
Dish d = new Dish;
.... // add some onions and carrots,
.... // chop everything finely,
.... // cook for a long time
return d;
}
}
5. class Casserole: public class Dish {
public:
virtual Casserole cook(TwentyPoundTurkey t) {
Casserole c = new Casserole;
.... // add some onions and carrots,
.... // chop everything finely,
.... // cook for a long time
return c;
}
}

Question 1. For each redefinition of the method cook in the class Casserole
say whether the function main below is valid if we replace the call to Dish: : cook
in main below by a call to the Casserole: : cook without changing anything else
in main. Note that it’s OK if the program produces a different result after the
method replacement, as long as the program doesn’t have a compile or run-time
error.

Please explain your answer in each case.

void main() {
Turkey t = new Turkey();
Dish d = Dish::cook(t);

¥

Question 2. For each of the following redefinitions of cook in Casserole please
indicate whether the new definition would be valid under the standard C++
inheritance rule, the permissive inheritance, and the contemporary inheritance.

Hint: Permissive inheritance corresponds to valid subtyping in question 1.

Problem 8 (C++4 multiple inheritance). The code for this problem is
available in my pub/4651 directory on epoxy in the file multiple.c.
You are given the following definition of classes Color and Point:

class Color {
private:
int red;
int green;
int blue;
public:
Color() {
red = 128;
green = 128;
blue = 128;
}
virtual void print() {
cout << "red = " << red << " green = ";
cout << green << " blue = " << blue << endl;
}
virtual void greener(int x) {
if (green + x < 256) green = green + x;
else green = 256;
}
s

class Point {
private:
int x;
int y;
public:
Point() {
x = 0;
y=0;

}
virtual void print() {
cout << "x = " KK x KK "y ="<Ky << endl;
}
virtual void move (int xx, int yy) {
X = x + xx;
y=3y tyy;
}
s

Question 1. Write the class ColorPoint which inherits from both Color and
Point. This class does not need a constructor (a new ColorPoint will be
initialized by the default constructors of Color and Point). In the new class
you need to overwrite the method print so that it calls the print method of
Color to print the values of the colors and then calls the print method of Point
to print out the coordinates. Do not add or overwrite any other methods.

Test your code on the following main function:

void main() {
ColorPoint cp;
cp.greener(50);
cp.move (5, 4);
cp-print();

}

Question 2. Draw the internal representation of a color point cp, including the
values of the instance variables and the tables of virtual methods. Explain in
detail how each of the methods and each private variable in the example above
is found.

