CSci 4651 Fall 2003
Problem Set 6: Storage management.
Due Wednesday, November 5th

IMPORTANT, please read before you start working on the prob-
lems: This problem set uses Java syntax for convenience. However, this is
NOT Java code. Read each problem carefully to understand which model you
are working in (pass-by-value vs. pass-by-reference, static vs. dynamic scope
rules, etc.). Assume that all code given below is syntactically correct and does
not cause compilation error. Assume that print(¢‘x = ’’ + x) is a printing
command which works like System.out.println(‘‘x = °’ + x) in Java for
all types of variables used in this problem set.

If you are confused about the syntax, please ask in class, during my office
hours, or by e-mail.

Problem 1. Consider the following code (the lines are numbered for easy
reference):

1. int x = 3;

2. A

3. int y = 5 + x;

4. {

5. int x = 2 + y;
6. }

7. X = y;

8. }

Question 1. Draw the program stack right after line 5 gets executed.
Question 2. What is the final value of x in this program fragment?
Question 3. Consider two variable declarations: the one on line 1 and the
one on line 3. Which lines of the code constitute the scope of each of these
declarations?

Question 4. Which lines constitute the lifetime of each of the declarations in
Question 3?7

Problem 2. Consider the call £(2, -1) to the following function:

int £ (int x, int y) {
int z = 0;
int w = x * Xx;
if (y < 0) {
int z = -w;
print("z = " + 2);
}

return z;

Question 1. Draw the program stack at the point right after the line

int z = -w;
is executed.
Question 2. What will be printed by the print statement? What will be the
value returned by the function? Explain your answers using the stack diagram
from Question 1.

Problem 3. Recall that Fibonacci numbers are defined the following way:
FO = O,Fl =].,Fn = I'n—1 +Fn_2 for n Z 2.

Question 1. Consider the following recursive function which computes the n-th
Fibonacci number:

int fib (int n) {

if (n == 0) return 0;

if (n == 1) return 1;

return fib(n-1) + fib(n - 2);
}

Suppose a program computes £ib(3). The program will start the computation
by pushing the activation record for £ib(3) on the stack. Then fib(2) will be
called from £ib(3), and its activation record will be pushed on the stack:

push f£ib(3)
push fib(2)

Continue the sequence until the return of £ib(3) (so that the last stack opera-
tion is pop £ib(3)).

How many activation records are generated for this computation? What
is the maximum number of activation records for £ib residing on the stack
simultaneously during this computation?

Question 2. Fill in the missing code for a tail-recursive version of £ib below,
assuming that £ibTail(3, 0, 1) computes F3.

int fibTail (int n, int f1, int £2) {
if (n == 0) return f1;
return fibTail(....);

}

Note: you may test your function using Java (the above code is syntactically
correct, provided the missing parameters are specified in a syntactically-correct
manner).

Question 3. Assuming that no optimization has been performed, write down
the sequence of push/pop operations on the program stack for the tail-recursive
function in Question 2 in computation of F3. How many activation records were
generated in this computation? How many of them (maximum) resided on the
stack simultaneously?

Question 4 (Extra credit). If the optimization has been performed to turn
the tail-recursive function in Question 3 into a while loop, what is the loop?
Use the Java syntax for your answer.

Problem 4. Consider the following function:

int £(int n, int m) {
n=mn+1;
m=m+ 1;
return n + m;

¥

Question 1. Suppose that the function is called in the following fragment of
code:

int x = 2;
int y = 3;
print(£(x,y));
print(x);
print(y);

What would be the printed by the code fragment in each of the following cases:
1. Both function parameters are passed by value.
2. Both function parameters are passed by reference.

3. The first function parameter is passed by value, and the second one is
passed by reference.

Question 2. Now consider the following fragment of code:

int x = 2;
print (f(x,x));
print(x);

What would be the printed by the code fragment in each of the following cases:
1. Both function parameters are passed by value.
2. Both function parameters are passed by reference.

3. The first function parameter is passed by value, and the second one is
passed by reference.

4. The first function parameter is passed by reference, and the second one is
passed by value.

Problem 5. Consider the following program, where main is the first function
in program execution. Parameters are passed by value.

int x = 2;
int y = 3;

void f(int n) {
X =X + n;
y=y-mn;
}

void main () {
int x = 1;

£(1);

{
int y = 5;
£(x);

}

}

Question 1. Assuming dynamic scope rules, draw the program stack at two
points in execution: right before the call £ (1) returns and right before the call
f (x) returns. Show values of all variables in the stack pictures.

Note that for the second function call the stack will have both kinds of
blocks: in-line blocks and those associated with a function.
Question 2. What are the final values of global x and y in the case of dynamic
scope rules? Use the stack pictures to explain your answer.
Questions 3 and 4. The same as 1 and 2, but for static scope rules.

Problem 6. Consider the following program where main is the first function
in program execution. Assume the static scope rules. int -> int is the type
of functions from an integer to another integer.

int x = 0;

int £(int a) {
if (a == 1) return x;
else {
X=X + a;
return f(a - 1);

}

void g (int -> int h) {
int x = b;
print (h(2));

}

void main () {
g(f);
}

Question 1. Note that f is recursive. Draw the program stack and function
closures when all activation records for £ needed for this program are pushed
on the stack.

Question 2. What is going to be printed in the program? Use the stack picture
to explain your answer.

Problem 7. Assume the static scope rules and notations as in the previous
problem. Consider the following code fragment, where f returns a function g:

1. int-> int £ () {

2. int x = 0;

3. return (void gO) {x=x+1; });
4. %

5. void main () {

6. int => int h = £();

7. hQ;

8. int -> int j = £();

9. jO;

10. }

Draw the program stack and all the function closures at the following points of
the program execution:

1. Right before line 7 is executed.

2. Right after line 7 is executed.
3. Right after line 8 is executed.
4. Right after line 9 is executed.

Show the values of all variables.

