CSci 4651 Fall 2003
Problem Set 2: Functional programming (Scheme)

Problem 1. Scheme allows a programmer to write very general functions
which can be instantiated to perform a variety of tasks. Below is a function
traverse that allows working with lists in a very general way. traverse returns
a function that traverses a list and performs a specified task. The task depends
on the parameters passed to traverse.

Given appropriate parameters, traverse can generate a mapping function (a
function that modifies all elements of a list in a certain way), a filter (removing
elements that don’t satisfy a certain condition from a list), and functions for
many other tasks on lists. Below is definition of traverse:

(define traverse (lambda (combine do seed)
(lambda (x)
(cond ((eq? x ’()) seed)
(#t (combine (do (car x))
((traverse combine do seed) (cdr x))))))))

The three parameters of traverse are as follows:

e combine is a function that combines the result for one element with the
result for the rest of the list,

e do is a function that performs the specified action on the element, and

e seed is the result for an empty list.

Example: the function mapsquare below is defined via traverse. Given a
list of integers, it creates a list of squares of these integers:

> (define mapsquare (traverse cons (lambda (x) (* x x)) ’(0)))

> (mapsquare ’(1 -2 3))

(149
You should study this example in detail before attempting to solve the problems
below.

Note: examples in this problem set use cond instead of if and ’ () instead of

nil or null for an empty list. Please feel free to use other notations if they are
more familiar to you. All the code given here has been tested under DrScheme.

Question 1. Using traverse, define and test the following functions:
1. sumlist to compute the sum of all the elements of an integer list.

2. count to count the number of elements in a list (make sure to test this
function on a list of non-integers).

3. removeb to remove all 5s from a list of integers.

4. reverse to reverse a list.

5. min to find a minimum element in a list of integers (What would be the
seed for this function? Make an assumption about the largest number
that may appear on a list)

6. Extra Credit. bettermin — a function that finds a minimum element
in a non-empty the list and returns #f for an empty list. Your function
should work for arbitrary large numbers.

You may define other functions to solve the problem. Submit a printout of your
interactions with scheme (File — > Print Interactions, then print after viewing
the preview).
Question 2. Write a function deeptraverse which is analogous to traverse,
but works on lists of lists (of arbitrary level of nesting). For instance, you should
be able to use deeptraverse like this:
> (define deepmapsquare (deeptraverse cons (lambda (x) (* x x)) *(0)))
> (deepmapsquare (1 () (3 (-2 5))))
a0 @28

The function 1ist? which returns #t if the argument is a list and #f
otherwise might be helpful for this task.

Test your solution carefully to make sure that it works for various kinds of
nested lists.

Question 3. Using deeptraverse from Question 2, define the following
functions:

1. deepsumlist to compute the sum of all the elements of a list of lists.

2. deepreverse to reverse every list in a list of lists. For example,

> (deepreverse (1 () (3 (-2 5))))
(((6-2) 3) O D

3. flatten to “flatten” a list of lists, i.e. to put all of its elements in a single
list. For instance:
> (flatten (1 (O (3 (-2 5))))
(1 3 -25)

Note: your function should preserve the order of the elements.
Problem 2. Exercise 3.1 p. 40, parts b,c.

Problem 3. Exercise 3.2 p. 40-41, parts a,b,c.
Problem 4. Exercise 3.6 p. 44-45.

