Problem 1 (6 points). You are given three sets, \(A = \{a, b, c\} \), \(B = \{1, 2, 3\} \), and \(C = \{\text{red, white, blue}\} \), and the following relations:

- \(R \subseteq A \times B = \{(a, 1), (b, 1), (c, 3)\} \),
- \(S \subseteq B \times C = \{(1, \text{red}), (2, \text{blue}), (3, \text{red})\} \),
- \(T \subseteq C \times A = \{(\text{red}, a), (\text{white}, c)\} \).

For each of the following operations compute the result if the operation makes sense, or, if it doesn’t make sense, please explain why.

1. \(R; S \)
2. \(S; T \)
3. \(R; R^{-1} \)
4. \(R^{-1}; R \)
5. \(R^{-1}; T^{-1} \)
6. \(R; T \)

Problem 2 (6 points). Exercises 17, 19, 22 p. 593.

Problem 3 (4 points). Exercises 4, 11 p. 608.

Problem 4 (5 points) You are given relation \(R = \{(a, b), (b, c), (c, b), (d, c)\} \) on the universal set \(U = \{a, b, c, d, e\} \). Please construct the following:

- the reflexive closure of \(R \).
- the symmetric closure of \(R \).
- the transitive closure of \(R \).
- the “equivalence closure” of \(R \) (i.e. the smallest equivalence relation that contains \(R \)).
You may list pairs included in the resulting relations or draw the relations, each as a separate diagram.

Problem 5 (2 points). Is symmetric closure of a transitive relation transitive? If yes, please prove it. If not, please give a counterexample.

Problem 6 (3 points). Exercises 6, 7, 9 p. 647.

Problem 7 (6 points). Exercise 2 p. 680.

Problem 8 (2 points). Exercises 3b, 5b p. 696.

Problem 9 (6 points). Exercise 19 p. 696.

That’s all, folks!