CSci 1302 Assignment 3

Due Wedn., February 11th, 2004

Note: the symbol $\leq \geq$ stands for logical equivalence.

Problem 1 (5 points). Given the Negation law, both De Morgan's laws, and the Distributivity law $p \lor (q \land r) < \equiv > (p \lor q) \land (p \lor r)$, prove the second Distributivity law:

$$p \land (q \lor r) \lessdot \equiv \gt (p \land q) \lor (p \land r).$$

Use a transformational proof, not truth tables.

Hint: use the same approach as in the proofs in Example 4.3.

Problem 2 (6 points). Exercise 4.4 p. 54.

Problem 3 (20 points). Prove the following:

- 1. $(p \Rightarrow q) \lor (p \Rightarrow r) \lor p$ is a tautology,
- 2. $(p \Rightarrow q) \land (p \Rightarrow r) \land p \leq \geq p \land q \land r$,
- 3. $(p \Rightarrow q) \land \neg q \leq > \neg (p \lor q)$,
- 4. $p \lor (q \land r \land s) \le > (p \lor q) \land (p \lor r) \land (p \lor s)$,
- 5. $(p \land q \land r) \lor s \le > (p \lor s) \land (q \lor s) \land (r \lor s)$.

Try to make your proof short. Proofs that are too long (i.e. have unnecessary steps) may get lower grades.

Problem 4 (14 points total). Consider a connective "exclusive OR", denoted by \oplus .

Question 1 (5 points). Using the symbol \oplus , write down the following properties:

- 1. idempotence of \oplus
- 2. commutativity of \oplus
- 3. associativity of \oplus
- 4. distributivity of \oplus over \wedge
- 5. distributivity of \Rightarrow over \oplus

You don't need to worry about whether these properties are true or false. You don't even need to know (yet) what \oplus stands for.

Question 2 (4 points). Recall that \oplus is defined as follows: $p \oplus q$ if and only if $(p \lor q) \land \neg (p \land q)$. Rewrite the properties 1, 2, and 3 above without using the notation \oplus .

Extra credit, 4 points. Rewrite properties 4 and 5 without using the notation \oplus .

Question 3 (5 points). For the first two properties in Question 2 (idempotence and commutativity of \oplus) either give a transformational proof, or show that the property doesn't hold.