CSci 1302 Assignment 12 Due Friday, Dec. 8

Problem 1 (6 points). You are given three sets, $A = \{a, b, c\}$, $B = \{1, 2, 3\}$, and $C = \{red, white, blue\}$, and the following relations:

- $R \subseteq A \times B = \{(a, 1), (b, 1), (c, 3)\},\$
- $S \subseteq B \times C = \{(2, red), (2, blue), (3, red)\},\$
- $T \subseteq C \times A = \{(red, a), (white, c)\}.$

For each of the following operations compute the result if the operation makes sense, or, if it doesn't make sense, please explain why.

- 1. R; S
- 2. S; T
- 3. $R: R^{-1}$
- 4. R^{-1} ; R
- 5. R^{-1} ; T^{-1}
- 6. R;T

Problem 2 (4 points). Exercises 4, 11 p. 608.

Problem 3 (6 points). For each relation on natural numbers $\mathbb{N} = \{1, 2, 3, \dots\}$ defined below please answer the following questions:

- Is the relation reflexive?
- Is the relation symmetric?
- Is the relation antisymmetric?
- Is the relation transitive?

Please explain the negative answers briefly.

- 1. $R = \{(n, m) \mid n + m \text{ is even}\}$
- 2. $R = \{(n, m) \mid n + m \text{ is odd}\}\$
- 3. $R = \{(n, m) \mid n \text{ is even}, m \text{ is even}\}$

Problem 4 (5 points) You are given relation $R = \{(a, b), (b, c), (c, b), (d, c)\}$ on the universal set $U = \{a, b, c, d, e\}$. Please construct the following:

- the reflexive closure of R.
- the symmetric closure of R.
- the transitive closure of R.
- the "equivalence closure" of R (i.e. the smallest equivalence relation that contains R).

You may list pairs included in the resulting relations or draw them (each on a separate diagram).

Problem 5 (2 points). Is symmetric closure of a transitive relation transitive? If yes, please prove it. If not, please give a counterexample.