CSci 1302 Assignment 10 Due Wedn., December 7th

Problem 1 (6 points). Exercises 4, 6 (| is defined on p. 148), 11 p. 608.

Problem 2 (6 points). Exercises 19, 20, 21 p. 609.

Problem 3 (5 points) You are given relation $R = \{(a, b), (b, c), (c, b), (d, c)\}$ on the universal set $U = \{a, b, c, d, e\}$. Please construct the following:

- the reflexive closure of R.
- the symmetric closure of R.
- the transitive closure of R.
- the "equivalence closure" of R (i.e. the smallest equivalence relation that contains R).

You may list pairs included in the resulting relations or draw them (each on a separate diagram).

Problem 4 (6 points) You are given a relation $R = \{(m, n) \mid m - n = 5\}$ on the set of integers. Please construct the following:

- the reflexive closure of R.
- the symmetric closure of R.
- the transitive closure of R.
- the "equivalence closure" of R (i.e. the smallest equivalence relation that contains R). How many classes are in the partition induced by this equivalence relation? What are they?

Problem 5 (2 points). Is symmetric closure of a transitive relation transitive? If yes, please prove it. If not, please give a counterexample.

Problem 6 (6 points). You are given three sets, $A = \{a, b, c\}$, $B = \{1, 2, 3\}$, and $C = \{red, white, blue\}$, and the following relations:

- $R \subseteq A \times B = \{(a, 1), (b, 1), (c, 3)\},\$
- $S \subseteq B \times C = \{(2, red), (2, blue), (3, red)\},\$
- $T \subseteq C \times A = \{(red, a), (white, c)\}.$

For each of the following operations compute the result if the operation makes sense, or, if it doesn't make sense, please explain why.

- 1. $S \circ R$
- 2. $T \circ S$
- $3.\ R^{-1}\circ R$
- 4. $R \circ R^{-1}$
- 5. $T^{-1} \circ R^{-1}$
- 6. $T \circ R$

Problem 7 (3 points). Exercises 6, 7, 9 p. 647.

Problem 8 (2 points). Exercise 11 p. c, e, f, g (not d!) p. 647.

Problem 9 (4 points). Exercise 41 b, 42 a,b, 44 p. 648.