CSci 1302 Assignment 8 Due Mon., November 10, 2003

Problem 1 (15 points). Prove the following by induction. Make sure to read the claims carefully. It might be helpful to write out and check the first few cases before proving the general formula.

- 1. $\sum_{i=0}^{n-1} (2 \cdot i + 1) = n^2$ (note that the summation starts at i = 0, not i = 1).
- 2. $\sum_{i=1}^{n} (i \cdot 2^{i}) = (n-1) \cdot 2^{n+1} + 2$.
- 3. $4^n 1$ is divisible by 3 for $n \ge 0$.

Problem 2 (5 points). Prove the following property of Fibonacci numbers by induction on n (m remains constant) $F_{n+m} = F_m \cdot F_{n+1} + F_{m-1} \cdot F_n$, assuming that $n \ge 0$ and $m \ge 1$.

Problem 3 (5 points). Consider a currency consisting of 2-cent and 5-cent coins only. Show by induction that any amount above 3 cents can be represented using these coins.

Hint: suppose you are given a bag of coins whose sum is $n \ (n > 3)$. How can you replace some coins in the bag to increment the total amount in the bag by 1?