CSci 1302 Assignment 3 Due Wedn., September 24, 2003

Note: the symbol $\leq \geq$ stands for logical equivalence.

Problem 1 (20 points). Prove the following:

- 1. $(p \Rightarrow q) \lor (p \Rightarrow r) \lor p$ is a tautology,
- 2. $(p \Rightarrow q) \land (p \Rightarrow r) \land p < \equiv > p \land q \land r$,
- 3. $(p \Rightarrow q) \land \neg q \leq > \neg (p \lor q)$,
- 4. $p \lor (q \land r \land s) \le (p \lor q) \land (p \lor r) \land (p \lor s)$,
- 5. $(p \land q \land r) \lor s \le > (p \lor s) \land (q \lor s) \land (r \lor s)$.

Try to make your proofs as short as possible. Proofs that are too long may get lower grades.

Problem 2 (20 points). Consider a connective exclusive OR, denoted by \oplus . **Question 1 (5 points).** Using the symbol \oplus , write down the following properties:

- 1. idempotence of \oplus
- 2. commutativity of \oplus
- 3. associativity of \oplus
- 4. distributivity of \oplus over \wedge
- 5. distributivity of \Rightarrow over \oplus

You don't need to worry about whether these properties are true or false. You don't even need to know (yet) what \oplus stands for.

Question 2 (10 points). Recall that \oplus is defined as follows: $p \oplus q$ if and only if $(p \lor q) \land \neg (p \land q)$.

Rewrite the properties above without using the notation for \oplus .

Question 3 (5 points + possible extra credit). For the first two properties in Question 2 (idempotence and commutativity of \oplus) either give a transformational proof, or show that the property doesn't hold. To show that a property doesn't hold, you may use truth tables. However, you will earn extra credit if you use a transformational proof to disprove the property (for instance, you may show that the right-hand side and the left-hand side reduce to simple formulas which are clearly not equivalent).