CSci 1302 Assignment 3 Due Wedn., September 24, 2003 Note: the symbol $\leq \geq$ stands for logical equivalence. ## **Problem 1 (20 points).** Prove the following: - 1. $(p \Rightarrow q) \lor (p \Rightarrow r) \lor p$ is a tautology, - 2. $(p \Rightarrow q) \land (p \Rightarrow r) \land p < \equiv > p \land q \land r$, - 3. $(p \Rightarrow q) \land \neg q \leq > \neg (p \lor q)$, - 4. $p \lor (q \land r \land s) \le (p \lor q) \land (p \lor r) \land (p \lor s)$, - 5. $(p \land q \land r) \lor s \le > (p \lor s) \land (q \lor s) \land (r \lor s)$. Try to make your proofs as short as possible. Proofs that are too long may get lower grades. **Problem 2 (20 points).** Consider a connective exclusive OR, denoted by \oplus . **Question 1 (5 points).** Using the symbol \oplus , write down the following properties: - 1. idempotence of \oplus - 2. commutativity of \oplus - 3. associativity of \oplus - 4. distributivity of \oplus over \wedge - 5. distributivity of \Rightarrow over \oplus You don't need to worry about whether these properties are true or false. You don't even need to know (yet) what \oplus stands for. **Question 2 (10 points).** Recall that \oplus is defined as follows: $p \oplus q$ if and only if $(p \lor q) \land \neg (p \land q)$. Rewrite the properties above without using the notation for \oplus . Question 3 (5 points + possible extra credit). For the first two properties in Question 2 (idempotence and commutativity of \oplus) either give a transformational proof, or show that the property doesn't hold. To show that a property doesn't hold, you may use truth tables. However, you will earn extra credit if you use a transformational proof to disprove the property (for instance, you may show that the right-hand side and the left-hand side reduce to simple formulas which are clearly not equivalent).